

T H E R M O P T I M ®

REFERENCE

MANUAL

VOLUME III

USE AND DESIGN OF EXTERNAL CLASSES

SUBSTANCES, PROCESSES AND EXTERNAL NODES

DRIVERS

JAVA VERSIONS 2.5 TO 2.8

© R. GICQUEL NOVEMBER 2014

2

Thermoptim reference manual volume 3 November 2014

CONTENTS

1 Foreword ... 6

Thermoptim documentation .. 6

Access the documentation via hypertext links .. 6

DIAPASON, ONLINE E-LEARNING MODULES WITH AUDIO .. 7

2 Extension system for Thermoptim by adding external classes ... 7

2.1 Software implementation .. 8

2.2 Programming issues .. 9

2.3 Using the external classes ... 9

2.4 Three categories of interface methods ... 10

2.5 Using external components ... 11

2.5.1 VIEWING THE AVAILABLE EXTERNAL CLASSES ... 11

2.5.2 Representation of an external component in the diagram editor ... 11

2.5.3 LOADING AN EXTERNAL CLASS ... 11

2.5.4 Thermocouplers ... 12

2.5.5 External Nodes ... 13
2.5.6 Miscellaneous comments ... 14

2.6 Representation of real fluid mixtures in Thermoptim .. 15
2.6.1 Link between Thermoptim and thermodynamic properties servers ... 15
2.6.2 Creating an external mixture .. 15

3 PROGRAMMING EXTERNAL COMPONENTS ... 17

3.1 External Substances .. 17
3.1.1 Construction of pure external substances ... 17

3.1.2 CALCULATIONS ON THE PURE EXTERNAL SUBSTANCES ... 19

3.1.2.1 Principles of correspondence .. 19

3.1.2.2 Examples of implementation .. 19

3.1.3 Constructing external mixtures .. 20

3

Thermoptim reference manual volume 3 November 2014

3.1.3.1 Special issues .. 20

3.1.3.2 Critical or pseudo-critical values: getCriticalParameters() method ... 21

3.1.3.3 Files associated with external mixtures ... 22

3.1.3.3 Example of external mixture: the system LiBr-H2O ... 22

3.1.4 Instantiation from external classes ... 24
3.1.5 Coupling class with the properties server TEP ThermoSoft .. 24

3.2 External Processes .. 29
3.2.1 Construction ... 29
3.2.2 Updating and calculating the process ... 30
3.2.3 Moist calculations .. 33
3.2.4 Calculation of exergy balances .. 33
3.2.5 Managing Energy Types .. 36
3.2.5 Access to other elements of the simulator .. 36

3.2.6 SAVING AND LOADING THE PARAMETERS OF THE MODEL .. 38

3.3 EXTERNAL NODES .. 38

3.3.1 Construction ... 39

3.3.2 UPDATING AND CALCULATING A NODE .. 39

3.3.3 Managing energy types .. 43

3.3.4 SAVING AND LOADING THE PARAMETERS OF THE MODEL .. 43

3.4 Access to instances of external nodes and processes .. 43

3.5 External Driving of Thermoptim ... 44

3.5.1 Facilitating the development of external classes .. 44

3.5.2 PROVIDING ACCESS TO THE UNPROTECTED LIBRARIES ... 45

3.5.3 Operation in client-server mode ... 47

3.6 INTEGRATING EXTERNAL CLASSES IN THE LIBRARY extUser2.zip .. 47

3.6.1 USING THE EXTERNAL CLASS MANAGER ... 47

3.6.2 USING A STANDARD COMPRESSOR ... 49

3.6.3 MODIFYING THE CLASSPATH FOR ADDING JAVA LIBRARIES .. 50

3.6.4 VIEWING EXTERNAL CLASSES ... 50

4

Thermoptim reference manual volume 3 November 2014

4 EXTERNAL CLASS DEVELOPMENT ENVIRONMENT .. 50

4.1 PRESENTATION OF THE WORKSPACE .. 51

4.2 Installing JCreator .. 51

4.3 Emulating Thermoptim from JCreator .. 53

Appendix 1 : Thermoptim methods which can be called by external classes .. 54

package rg.corps ... 54
In Corps ... 54
In CorpsExt ... 55

package rg.thopt ... 56
In Projet ... 56
In PilotFrame... 58
In ComposantExt ... 58
In TransfoExterne ... 59
In DividerExterne .. 59
In MixerExterne .. 60
In ComprExt .. 60

Annex 2 : THERMOPTIM METHODS COdE .. 62

We give here the code of certain Project and Corps methods whose structure must be faithfully reproduced if
they are to be used in subclasses. .. 62

Method getProperties() of Projet .. 62

Method updatePoint () of Projet ... 64

Method getSubstProperties() of Corps .. 66

Method getExternalClassInstances () of Projet .. 66

Method setupChart () of Projet ... 67

Annex 3 : utility methods of class Util ... 68

Annexe 4 : TEP ThermoSoft - Interface Java / Delphi – Application à Thermoptim 70

(par F. Rivollet) ... 70

Structure de dialogue entre les deux programmes .. 70

Exécuter un calcul en java .. 70
Définition des méthodes de dialogue avec TEP ThermoSoft .. 70
Chargement/Libération des modèles thermodynamiques en mémoire .. 71
Définition d’un système .. 71
Modifier / Lire des variables de TEP ThermoSoft .. 72
Lancer un calcul .. 72
Exemple d’écriture d’un calcul complet ... 73

Variables et méthodes de calcul disponibles ... 73
Variables classiques .. 73
Méthodes de calcul .. 74

Annex 5 : UML Diagrams of external classes ... 75

5

Thermoptim reference manual volume 3 November 2014

© R. GICQUEL 1997 - 2012. All Rights Reserved. This document may not be reproduced in part nor in whole
without the author’s express written consent, except for the licensee’s personal use and solely in accordance with
the contractual terms indicated in the software license agreement.
Information in this document is subject to change without notice and does not represent a commitment on the
part of the author.

6

Thermoptim reference manual volume 3 November 2014

1 F O R E W O R D

T H E R M O P T I M D O C U M E N T A T I O N

Thermoptim documentation is
comprised of several complementary
parts:

- a short documentation named
Quick Reference available
through menu Help: it gives
access to tab frames
introducing the main concepts
used

- a printable documentation,
mainly as pdf files

- on line e-learning modules
with sound tracks

Printable documentation

The printable documentation is comprised of several parts which can be displayed through the Help menu of the
simulator:

- Four Getting Started brochures allow one to quickly (less than half an hour) get used to Thermoptim.
The first one presents an electricity steam cycle, the second one a combustion gas turbine, the third one
a refrigeration cycle and the fourth one an air conditioning system

- The reference manual, itself comprised of three volumes and of the interactive charts manuals. The first
volume introduces the software, the diagram editor, the use of the post-processing Excel macro and the
optimization method, the second one deals with the simulator (screens of the different primitive types
and advanced tools available in the modeling environment), and lastly the third volume explains how to
use and build external classes

- a Frequently Asked Questions file is also available

Several examples with detailed explanations allow a user to get acquainted with the software thanks to a detailed
presentation of how projects can be built. Three of the examples extend the Getting Started brochures.

The present document is the third volume of
the reference manual. It is dedicated to the
design of external classes. After a brief
overview of the extension mechanism that has
been adopted, it explains how to use and
design external classes, and it introduces a
freely distributed development environment.

Access the documentation via
hypertext links

Hyperlinks to the documentation

7

Thermoptim reference manual volume 3 November 2014

Windows versions 1.5 and later include hypertext links that provide direct access to the documentation and the
FAQ. In order for the links to work, the file paths must be identical to what was entered in Thermoptim,
otherwise they will not appear on the list.

The documentation in English must therefore be structured as shown in the figure above. If you have an older
installer, rename the files accordingly.

D I A P A S O N , O N L I N E E - L E A R N I N G M O D U L E S W I T H
A U D I O

We have developed DIAPASON e-learning modules, which are online instructional modules with audio and
animation allowing users to work on their own, at their own pace, with access at all times to oral explanations in
addition to the written materials provided. The Diapason modules use a Flash player that runs in most browsers.
An online presentation of these modules in English can be viewed at:
 http://www-cep.ensmp.fr/cours/Diapason/seances/PresDiapasonEn/seance.html.

The list of sessions available in English if given in:

http://www.thermoptim.org/sections/logiciels/divers-portail/seances-disponibles

The following session is dedicated to being introduced to Thermoptim (in English):
http://www.thermoptim.org/sections/enseignement/cours-en-ligne/seances-diapason/session-s07en_init-first

There is also a special unit specifically on how to use and program external classes (in English):
http://www.thermoptim.org/sections/enseignement/cours-en-ligne/seances-diapason/s07en_ext-introduction

The purpose of these sessions is to introduce users to Thermoptim and enable them to become familiar with
using it by building models using examples of simple energy systems (gas turbine, steam power plant,
compression refrigeration system). We recommend that you refer to these sessions if you can.

2 E X T E N S I O N S Y S T E M F O R T H E R M O P T I M B Y A D D I N G
E X T E R N A L C L A S S E S

One great advantage of Thermoptim is that its graphic environment
can be used to visually build models for a large number of energy
systems, from the simplest refrigerator to complex integrated
gasification combined cycle electric power plants using several
hundred elements.

Not only does this greatly simplify the modeling process and
facilitate subsequent use and maintenance of the model, but it also
makes the models more reliable. The connections between the
different elements are made automatically, thus ensuring
consistency.

Through version 1.4, only the components available in the
Thermoptim primitive type set could be assembled in this manner,
which limited the potential of the software. A number of users
wished to be able to define their own elements and/or their own
substances.

Hyperlinks to the documentation

List of substances

8

Thermoptim reference manual volume 3 November 2014

Thermoptim interface with external classes (Java code elements) provides the solution and facilitates the
interoperability of the software with the outside world, especially with other applications developed using Java.

The benefits are two-fold:

- create Thermoptim extensions from common
primitive type set, by adding external modules
that define the elements that automatically appear
on the screens in a seamless fashion. Thus users
can add their own substances or components not
available in the basic set.

- drive Thermoptim from another application,
either to guide a user (smart tutorial) or to check
the code (driver or regulation, access to
thermodynamic libraries).

The previous and opposite figures show how the
external substances are added to Thermoptim list
of substances, and then replace an internal
substance on the point screen. They are just as
easy to use as if they were part of the software.

The figure opposite shows how an external
component representing a solar
collector appears in the diagram editor,
and the figure below shows the screen
of the corresponding process,
composed partly of Thermoptim
internal code and partly of external
code (lower third on the right).

2 . 1 S O F T W A R E
I M P L E M E N T A T I O N

Practically speaking,
adding a new external
process is quite easy.
Simply create a specific
class, which inherits from
the abstract parent class
extThopt.ExtProcess. The
interaction with
Thermoptim is ensured on
two levels:

by general methods for

performing the
required calculations;

by a JPanel that is built in
to the external process
screen. Thus, the class
designer can create his
own graphic interface, which is then inserted into the Thermoptim screen.

Substance screen

External process

External process screen

9

Thermoptim reference manual volume 3 November 2014

2 . 2 P R O G R A M M I N G I S S U E S

To protect the Thermoptim code, its classes are “obfuscated”, i.e. all of its elements are renamed, making it
extremely difficult to decompile. However, this makes it impossible to access the Thermoptim content from the
outside. The solution is not to obfuscate the methods that we want to be accessible. Thus there we must find a
compromise between accessibility and code protection, which means providing as few accesses as possible. For
the moment, only two Thermoptim packages out of five are partially accessible: rg.thopt and rg.corps. The first
contains the simulator classes and the second the substance classes.

The solution consists of adding a non-obfuscated package (extThopt), in which there are classes (for example
extThopt.CorpsExterne), recognized by Thermoptim, which are subclasses of Thermoptim classes, through
interface classes (extThopt.CorpsExterne is a subclass of rg.corps.CorpsExt, which in turn is a subclass of
rg.corps.Corps). These classes have methods that establish the correspondence with their obfuscated internal
equivalent. We recommend that you refer to the API of the package extThopt to learn about the syntax and
functions of all of the methods available. This API is part of the development environment of the external classes
available (in the folder api_extThopt).

2 . 3 U S I N G T H E E X T E R N A L C L A S S E S

In version 1.5, there are four types of external classes: substances, processes, dividers, and external nodes. The
same principle applies to all: in the external package (extThopt), an input class is simply an extension of one of
the Thermoptim classes (CorpsExterne for substances, TransfExterne for processes, etc.). All of the external
overloaded Thermoptim methods are located in this class. ExtThopt simply acts as the input point in its package.
Its role is to instantiate the various classes representing the elements added to Thermoptim and to interface with
the software using overloaded methods.

External classes inherit from an abstract parent class. For example, ExtSubstance for substances, ExtProcess for
components. In practice, the interaction with Thermoptim is ensured at one or two levels, depending:

- parent classes define all of the general methods useful for performing the required calculations
- with the exception of ExtSubstance, they also define a JPanel that is incorporated into the screen of the

external component. In this way, the designer can create his own graphic interface, which then appears
on the Thermoptim screen. The designer can define his own graphic elements (buttons, fields, labels,
etc.) and process specific actions in his methods. For the components, two methods,
saveCompParameters() and readCompParameters(String ligne_data), save the parameter settings in the
Thermoptim project file, for use when the project is loaded.

In short, external classes, such as CorpsExterne or TransfExterne, inherit directly from Thermoptim classes and
ensure the interface with the software. They call abstract classes, such as ExtSubstance or ExtProcess, whose
subclasses may be freely designed by the users via interface methods and JPanel.
The diagram below illustrates the structure used for external processes. For substances, the diagram is the same,
but simpler. Since there is no graphic interface, there is no need for the right-hand part of the diagram. People
familiar with UML notation will find the class diagrams for external substances and processes in Appendix 5.

The top part of the diagram corresponds to classes present in Thermoptim basic set, and the lower part
corresponds to the extThopt package that can be modified by the external class designer. SourceSink is a default
implementation of ComponentType to be able to instantiate a TransfoExterne, even in the absence of external
classes of this type, and SolarCollector and LiBrAbsorption are examples of external classes. The dotted blue
and red lines symbolize the relays of the parts of the code relating to the calculations and the graphic interface,
made from TransfoExterne to the other classes, either internal classes (SourceSink) or external classes
(subclasses of ExtProcess).

10

Thermoptim reference manual volume 3 November 2014

Thermoptim selects directly from the external classes as follows: When it is launched, the software analyzes the
archives extThopt2.zip and extUser2.zip, which contain all of the external classes. It finds all of the classes
added by default and by the users and sorts them by parent class, loads them in the various types of arrays, and
adds the external elements to its own lists so that they are seamlessly accessible. Subsequently, if one of these
elements is selected, Thermoptim sends its class to the appropriate constructor, which instantiates it. The line
External Class Viewer in the Special menu shows the external classes available (see section 3.6).

Once an external component is instantiated, it is possible to change it by double-clicking on its type as it appears
on the screen.

For now, there is no consistency test on the class names and element types, but this feature will be added shortly.
For the development of external classes, an emulation system makes it possible to launch Thermoptim from an
external application, and to dynamically load the classes under development, providing access to the debugging
tools in the usual working environment (see section 6).

Moreover, the package extThopt includes a Util class that provides a number of utility methods for formatting
numbers, reading them onscreen, saving and reading values, finding roots using the bisection method, etc. (see
Appendix 3).

2 . 4 T H R E E C A T E G O R I E S O F I N T E R F A C E M E T H O D S

The classes used in Thermoptim, CorpsExterne, TransfExterne and the other, define the interface methods,
which fall into three additional categories:

- Internal Thermoptim methods designed to be obfuscated
- Non-obfuscated internal methods that are directly used by the external classes: These methods are used to

execute the Thermoptim methods with external parameter settings, and must not be overloaded. Their

Structure of external processes

11

Thermoptim reference manual volume 3 November 2014

signature must be strictly respected: in particular, the structure of the Vectors of Objects used as arguments
must correspond exactly to what Thermoptim expects, or a ClassCastException will be generated.

- External methods corresponding to Thermoptim obfuscated methods: These methods are used to execute the
external methods from within Thermoptim, and must be overloaded.

The non-obfuscated methods falling into the last two categories are listed in Appendix 1, for all of the accessible
classes. For more information, please see the html documentation for these classes provided in the folder
api_Thermoptim.

2 . 5 U S I N G E X T E R N A L
C O M P O N E N T S

2 . 5 . 1 V I E W I N G T H E
A V A I L A B L E E X T E R N A L
C L A S S E S
To help you use and manage the external classes, the
line External Class Viewer from the Special menu
displays all of the external classes available. They are
sorted by type (substances, processes, mixers, dividers,
drivers) with a short description of the class selected
and where it comes from (extThopt2.zip and
extUser2.zip archives as well as classes under
development).

This screen can be consulted while you are developing
your model.

2 . 5 . 2 R E P R E S E N T A T I O N
O F A N E X T E R N A L
C O M P O N E N T I N T H E
D I A G R A M E D I T O R
Specific icons were added to represent the external

components (for processes, for mixers, and

 for dividers). The external component is then selected when the simulator is updated from the diagram as
indicated below.

2 . 5 . 3 L O A D I N G A N E X T E R N A L C L A S S

To load an external process (for
an external node, the process is
the same), you can either:
- from the simulator screen

click on the column header
of the process array, then
choose External and finally
select the type of external
process you want from the
list;

- Or, from the diagram
editor, build the external
component graphically then
update the simulator from
the diagram. In the case of
an external process, by
default it is a “heat source /

External class viewer

Default screen of an external process

12

Thermoptim reference manual volume 3 November 2014

sink” type, as shown in the screen opposite.

Once this default process is created, double click on the label “source / sink” to access the list of all external
processes available. Choose the one you want and it will be loaded.

2 . 5 . 4
T H E R M O C O U P
L E R S

The thermocoupler system
completes the heat exchanger
system by allowing
components other than
exchange processes to connect
to one or more exchange
processes to represent a
thermal coupling. This system
does not encompass the
exchanger system: two
exchange processes cannot be
connected by a thermocoupler.

This system has a number of
benefits, because it can be
used to represent many thermocouplers that do not constitute a heat exchange in the traditional sense, like for
example cooling the walls of the combustion chamber of a reciprocating engine, cooled compression, and above
all supply or removal of heat from the multi-functional external components.

The figure above is an illustration of this: An absorption refrigeration cycle, whose absorption-desorption system
is defined and integrated in an external process, is supplied with the steam that exits the evaporator then enters
the condenser. This cycle involves the mixture LiBr-H2O, whose properties are modeled either directly in the
external process, or in an external substance, and requires high temperature heat supply to the desorber and
medium temperature heat removal from the absorber. The representation of these thermocouplers is possible
thanks to the thermocoupler system: the external process calculates the thermal energies that must be exchanged,
and the thermocoupler recalculates the corresponding “exchange” process, which updates its downstream point.

The types of thermocouplers used by
an external component appear in the
lower right hand corner of the screen.
Double click on one of the types to
open the screen of the corresponding
thermocoupler.

Given that thermocouplers are a type
of heat exchanger, it is valuable to
define them by values such as
effectiveness ε, UA, NTU or LMTD,
that can be calculated using similar
equations. The component sends to
each of its thermocouplers the
equivalent values for flow rates, inlet
and outlet temperature and thermal
energy transferred, which they must
take into account in their calculations.
Specific methods are provided in the
external class code and are not user-modifiable.

External component with two thermocouplers

External process

13

Thermoptim reference manual volume 3 November 2014

However, there are limits to the similarities with exchangers: for example, temperature crossovers unacceptable
in an exchanger may occur in a thermocoupler, leading to absurd values.

So it is best to transmit values that are unlikely to lead to this type of situation. One possible solution is to
assume that the thermocoupler is isothermal for calculations of characteristics that are similar to exchanger
characteristics. For example, a combustion chamber may be assumed to be at mean temperature between its
upstream and downstream points when calculating cooling. This assumption is not absurd and may prevent a
temperature crossover between the cooling fluid and the gases that cross the component.

In the case of the absorption machine presented above, we assumed that the absorber and desorber were
isothermal.

Both lead to the screens below. If
we had not taken the temperature of
the absorber as a reference for the
exchange calculations, keeping the
temperatures of the steam entering
and exiting the external process, we
would have ended up with a
temperature crossover.

For external processes that accept
several thermocouplers and for
external nodes, the potential
complexity of the calculations
prevents the exchange process from
driving the thermocoupler. Its load
is always set by the external
component. This is why there are
fewer options for calculating a
thermocoupler than for a heat exchanger: The user can only choose between calculating the outlet temperature of
the exchange process (at a given flow rate) and the flow rate, when the temperature is known.

Note that on the thermocoupler
screen, the external component
fluid can be selected as a pinch
fluid and a minimum pinch value
can be entered (see optimization
method, volume 1).

2.5.5 External Nodes

The nodes of Thermoptim basic set
are extremely simple components
used to complete the description of
the fluid circuits. They are always
adiabatic, and they ensure the
conservation of the mass flow rate
and enthalpy

However, there is one somewhat special component, considered as a process, but which is in fact a node in most
cases: combustion, which receives an oxidizer and a fuel, and from which burned gases exit.

In the LiBr-H2O absorption example, a number of energy systems are involved, as well as components of
varying complexity, which can have a number of input and outlet fluids, after various internal calculations, with
or without thermocoupling with external heat sources.

External nodes allow a user to define these components. Only external mixers and dividers are defined: no
component simultaneously performs both functions (receiving and emitting several fluids), but you need only
couple an external mixer with an external diffuser to do so.

Absorber

Desorber

14

Thermoptim reference manual volume 3 November 2014

In many respects, we encounter
the same problems in
implementing these external
nodes as with thermocouplers:
the potential complexity of the
calculations to be made in the
node makes it necessary for the
node to take over and control
both the main vein and the
branches, since no default
calculation is possible.

The verification and consistency
problems are even more critical
than for thermocouplers: only
the node designer knows which
processes it must be connected
to in inlet and outlet. The user
must refer to the documentation
of the class to know how to use it.

The figure above shows the diagram of a desorber for an absorption machine using the LiBr-H2O mixture whose
properties must in this case be provided by an external substance.

The external node screen is shown
opposite. As with external
processes, it contains a general part
defined in the Thermoptim basic
set, completed by a part defined by
the user (here the lower left zone).
In the model shown here, the only
parameter defined in the node is
the temperature of the desorber.
The properties of the rich solution
(mass fraction and flow rate) and
the state of the refrigerant are
obtained from their respective
processes.

The node calculates the flow rates
of the refrigerant and the poor
solution, its state, and heat supply
required.

The thermocoupler then calculates the final state of the steam used.

Before each recalculation, the node checks that its structure is correct and loads the values that it needs to be
calculated. Then it updates the thermocoupler that can in turn be recalculated. In this example, we assumed that
the desorber was isothermal, and we took the flow rate of the poor solution as the reference flow rate.

2.5.6 Miscellaneous comments

You may have noticed that the screens of the external processes represented here are composed partly of
Thermoptim internal code and partly of external code (lower right section in the processes, lower left in the
nodes.). This is because the character strings used in the external components have not been “internationalized”
the way the Thermoptim basic set has.

LiBr-H2O mixture desorber

LiBr-H2O mixture desorber screen

15

Thermoptim reference manual volume 3 November 2014

But this does not affect their use in
any way. However, you can see that
the number display has not been
internationalized either, so the
decimal separator is not the same: it
is a period and not a comma. Of
course, this can be modified, but it
has not yet been done. This means
that the figures must be entered
with a point in the part defined in
the external component, and with a
comma in the rest of the screen. It
is important to pay close attention
to this issue, otherwise number
formatting errors will be detected
by Java.

2.6 Representation of
real fluid mixtures in Thermoptim

Until 2005, the only Thermoptim substances whose composition could be defined by the user were compound
gases. It was impossible to represent real fluid mixtures. The external substance system was reworked to be able
to do so, via the introduction of a new type of substance, called “external mixture”, and substances formerly
known as external substances were renamed “pure external substances”.

An external mixture is made from a system, i.e. from a given set of pure substances, and its composition is
specified in a new editor.

The distinctive characteristic of these external mixtures is that they can be used to generate a set of substances
from the same system of pure substances. In this way, they are similar to compound gases. The difference is that
the interactions among real fluids are much more complex than among ideal gases, so you must specify not only
the pure substances used, but also their models, mixture rules and a number of additional parameters.

2.6.1 Link between Thermoptim and thermodynamic properties servers

The system makes it possible not only to define external mixtures by completely writing their external classes,
but also to calculate those using thermodynamic properties servers (TPS), software packages that have
specialized libraries, such as TEP ThermoSoft developed by the Centre Energétique et Procédés of Ecole des
Mines de Paris and Simulis Thermodynamics made by ProSim.

This link is a very valuable extension of Thermoptim, since it means that many new fluids can be used in the
software, with extremely accurate models. The trade-off is that it is somewhat complex and especially,
calculation times can be long.

2.6.2 Creating an external mixture

The point calculation screen has
been modified slightly: an
“external mixture” option has been
added.
To create a new external mixture,
select this option then enter a new
substance name and press Enter.

The external mixture editor can
then be opened by clicking on
“display”. By default, the external
mixture created is of the type "LiBr-H2O external mixture" whose class is presented as an example in the
programming documentation. If this is the desired substance, enter its composition, then click “Save”. The

Thermocoupler

Point calculation screen for an external mixture

16

Thermoptim reference manual volume 3 November 2014

expected composition type (molar or mass fraction) is displayed above the component names column, and
corresponds to the first column of figures from the left.

In the title of the external mixture editor the following items appear:

- the mixture name (here LiBrH2O)
- the corresponding external class identifier (here LiBr-H2O external mixture)
- the name of the software used (either a TPS, or as in this example (rg) a family of external classes).
- the system used (here LiBr-H2O)

This information is used to characterize the mixture by referring to the documentation. The same TPS may
propose several systems, and may be used in several external classes.

From the pop-up menu located in the lower right of the editor screen you can display all of the systems available.
If the one proposed by default is not the one you want, select one from the list and click “load the mixture”. The
editor is then updated, and you can enter the composition and click “save”.

In a Thermoptim project file (.prj), the data for external mixtures are saved in the same way as for compound
gases.

COMPOUND SUBSTANCES 2
Name of gas / Components molar fraction mass fraction

gaz_brulés 5
CO2 0.0309766336 0.0477375785
H2O 0.0619532671 0.0390824699
O2 0.14154164 0.158596897
N2 0.756807249 0.74238276
Ar 0.0087212103 0.0122002945

LiBrH2O 2 extMixture=true classe=LiBr-H2O external mixture syst=LiBr-H2O
lithium bromide 0.35 0
water 0.65 0

External mixture editor

17

Thermoptim reference manual volume 3 November 2014

extMixture=true indicates that it is an external mixture,
and the rest of the line specifies the class and the
system selected. The next lines give the molar or mass
compositions (for the time being, for a given mixture,
the input can be done only in the manner selected by
the designer of the external class, either in molar
fractions, or in mass fractions).

Note that the order in which the components appears is
not random: it is defined in the corresponding external
class. Consequently, if you edit a project file manually,
you must keep the same order for the system
components.

The substance selection screen has been modified to
distinguish between two categories of external
substances. In this example, the three external mixtures
on the bottom of the list correspond to different
compositions of the same system.

Once the external mixture has been defined or loaded
from the substance selection screen, its composition
can be modified in the editor, and as we saw above, the
system can also be changed by selecting one from the
available libraries (pop-up menu on the lower right).

3 P R O G R A M M I N G E X T E R N A L C O M P O N E N T S

This section presents the basic notions needed to program external components, with some illustrations taken
from the examples provided with the development environment. Once again, however, we would like to stress
how important it is to properly prepare the documentation of your classes. The documentation must include at
least two sections: the programming file and the user documentation. A poorly documented class will be difficult
to use or modify, and the easiest time to document an external class is when it is created. Unfortunately
experience has shown that this is only rarely the case…

Since the external class represents a component model that has a physical sense, it is important to write a note
describing the model, both for the programming file and the user documentation. The code itself must include
enough comments to make the links to the model as clear as possible (in particular it is best if the notations are
uniform). Finally, the user documentation must specifically indicate the component constraints and requirements,
with a thorough description of which inlet and outlet fluids can be connected to it, (name, nature, etc.) and how
the thermocouplers, if any, must be constructed. The method getClassDescription () can be used to enter a brief
description of the class, which can be consulted from a special Thermoptim screen. We recommend including
the documentation references and the main constraints and requirements of the class in this method.

Practically speaking, you can proceed as follows: gather the following elements in an archive that has the same
name as the class: the java code of the component, its class file, a modeling note, instructions for use with a short
example of how it is used, and the .prj and .dia files for the example. A model library containing all of these
archives can easily be created and updated.

3.1 External Substances

3.1.1 Construction of pure external substances

The structure of external classes was defined above. The class extThopt.CorpsExterne inherits from the
rg.corps.CorpsExt class of Thermoptim and performs the interface, relaying the calculations to an abstract class
(extThopt.ExtSubstance). This class defines the basic methods and is subclassed by the different classes
introduced (for example extThopt.GlycolWater25, extThopt.GlycolWater40, etc.). We recommend that you refer

Substance selection screen

18

Thermoptim reference manual volume 3 November 2014

to the API of extThopt.CorpsExterne and extThopt.ExtSubstance to learn about the syntax and functions of all of
the methods available. This API is part of the development environment of the external classes available.

Since Thermoptim knows only the external interface class extThopt.CorpsExterne and the abstract class
extThopt.ExtSubstance, the instantiations can use only these two classes. The synchronization between the
internal and external methods must be done carefully, but it is the only way to make sure that the classes used are
working properly.

We will begin by explaining the construction procedure implemented in Thermoptim, then we will show how to
create a new external class, by subclassing extThopt.ExtSubstance.

3.1.1.1 Construction of a pure external substance in Thermoptim

The construction procedure is as follows:

1) the user selects an external substance from the list, which shows the index in the arrays of external classes

loaded in Thermoptim.
2) you load this class, which you transtype in ExtSubstance, and encapsulate in an Object.

Class c=(Class)rg.util.Util.substClasses[i];//load the class of the external substance
Constructor ct=c.getConstructor(null);//carefully instantiate it with its constructor without an argument.
extThopt.ExtSubstance ec=(extThopt.ExtSubstance)ct.newInstance(null);
Object ob=ec;//encapsulate it in an Object (otherwise the argument will not go through!)
corps=(Corps)new CorpsExterne(ob);//instantiate the external substance

which is done by the following constructor:

public CorpsExterne(Object obj){
 subst=(ExtSubstance)obj;
 setNom(subst.getType());
 setComment(subst.chemForm);
 initCorpsExt(subst.M, subst.PC, subst.TC, subst.VC, subst.Tmini, subst.Tmaxi,
 subst.Pmini, subst.Pmaxi, subst.typeCorps);
}

3.1.1.2 Creating a pure external substance

To create an external substance, simply subclass extThopt.ExtSubstance. Let us take the example of the class
DowThermA.

The constructor is as follows:

public DowThermA (){
 super();
 type=getType();//type of substance
 M=166; PC=31.34; TC=752.15; //initializations (molar mass, critical pressure and temperatures)
 Tmini=293.15; Tmaxi=523.15; //minimum and maximum temperatures of the substance definition
 chemForm="(C6H5)2O (73.5% vol), (C6H5)2 (26.5% vol)"; //chemical composition of the substance
 }

The method getType() sends the type of substance as it appears on the Thermoptim screens:

public String getType(){
 return "Dowtherm A";
 }

The method getClassDescription () can be used to enter a brief description of the class, which will appear in the
external class viewer (see section 3.6). Provide a short explanation of the model, and if possible cross-reference
to more detailed documentation.

19

Thermoptim reference manual volume 3 November 2014

public String getClassDescription(){
return "data from FLUIDFILE software by Dow Chemical\n\nauthor : R. Gicquel April 2003";

}

The methods for calculating the properties of the substance are presented later in the manual.

3 . 1 . 2 C A L C U L A T I O N S O N T H E P U R E E X T E R N A L
S U B S T A N C E S

3 . 1 . 2 . 1 P R I N C I P L E S O F C O R R E S P O N D E N C E

For the calculations, the arguments are passed by the non-obfuscated methods. Please see Appendix 1 for details
on existing methods.

For example, the enthalpy equation is inverted to solve for T in extThopt.CorpsExterne by:

 public double getT_from_hP(double hv,double P){
 return subst.getT_from_hP(hv,P);
 }

The interface class rg.corps.CorpsExt ensures the correspondence between inv_hp_T (obfuscated) and
getT_from_hP (non-obfuscated) :

 public double inv_hp_T(double hv,double P){
 return getT_from_hP(hv, P);
 }

Thus, any time inv_hp_T by is called by a method internal to Thermoptim for an external substance, the call is
relayed to getT_from_hP by rg.corps.CorpsExt.

Going in the other direction, rg.corps.Corps or rg.corps.CorpsExt contains the following method:

 public double getT_from_hP(double hv,double P){
 return inv_hp_T(hv, P);
 }

When getT_from_hP is called by an external method for an internal substance, the call is relayed to inv_hp_T.

3 . 1 . 2 . 2 E X A M P L E S O F I M P L E M E N T A T I O N

The class DowThermA defines a heat transfer fluid used in the exchangers. The substance remains in the liquid
state at all times, and the calculations are simple: For example enthalpy, which is a function only of temperature
(and its inversion).

public double calcH (double T, double P,double x) {
 double a=0.00281914712153519,b=1.51937611940298;

 double TT=T-273.15;
 return b*TT+a/2.*TT*TT;
}

because h is given by a second degree polynomial to solve for T, its inversion is explicit:

public double getT_from_hP(double $hv,double $P){

 double a=0.00281914712153519,b=1.51937611940298;
 double c=-$hv;
 a=a/2.;

20

Thermoptim reference manual volume 3 November 2014

 double delta=b*b-4.*a*c;
 double TT = (-b+Math.pow(delta,0.5))/2./a;

 return TT+273.15;
}

The calculations here are very simple. If we were dealing with a condensable vapor, they would be much more
complex. The class LiBrH2Omixture is a somewhat more complicated example.

3 . 1 . 3 C O N S T R U C T I N G E X T E R N A L M I X T U R E S

3 . 1 . 3 . 1 S P E C I A L I S S U E S

Like pure external substances, external mixtures are extThopt. ExtSubstance type, even if their calculations are
performed in the TPS. To differentiate them, external mixtures must implement the interface
extThopt.ExternalMixture, which specifies which methods they must define (see below).

The names of the pure external substances are listed on the substance selection screen, where they are used to
instantiate classes.

For external mixtures, things are much more complex, because the same external class can define several
systems, and each system generates as many compositions as the user wants, except of course if you are dealing
with a pure substance, in which case the molar fraction and the mass fraction are both 1. Each external class
defines all of the systems it proposes, and these systems cannot be modified by the user from within
Thermoptim.

The class rg.corps.ExtMixture is used to instantiate the mixtures. It has a Substance called refExternalSubstance,
which corresponds to the external class where the calculations are done, and with which it exchanges the system
name and the selected compositions, using the method CorpsExterne (which must not be obfuscated, of course):

 public void CalcPropCorps (double T, double p, double x, String systType, double[] fract_mol) {

 //we start by updating the system composition
 subst.updateComp(systType, fract_mol);
 double U=20., H=10., S=0.5, V=0.01, Cv=0., Xh=0.;

 if((T>=subst.Tmini)&&(T<=subst.Tmaxi)){
 //we call the method CalcPropCorps of the external mixture
 double[]val=subst.CalcPropCorps (T, p, x);
 //we load the values calculated
 H=val[0];
 V=val[1];
 Cv=val[2];
 x=val[3];
 U=val[4];
 S=val[5];
 }
 else{
 String message=resIntTh_fr.getString("mess_116");
 JOptionPane.showMessageDialog(new JFrame(),message);
 }
 //update of the substance variables (hidden)
 setState(p, T, x,//in arguments
 U, H, S, V, Cv, Xh);//to be recalculated
 }

This method relays the system selected (systType) and its molar or mass fraction (fract_mol) to the external
substance (subst), then calculates the point.

21

Thermoptim reference manual volume 3 November 2014

In order to return the value of the vapor quality or the composition at liquid-vapor equilibrium, we defined the
method getQuality(), which returns an array of doubles corresponding to the variable X of ExtSubstance, which
must be correctly updated when inversion calculations are performed.

Any external mixture must return three methods defined in the interface extThopt.ExternalMixture, used to
initialize ExtMixture when it is instantiated:

- public String getSoftware(), which defines the thermodynamic properties server used
- public Vector getMixtures(), which defines the names of the different systems, and the substances they

contain
- public boolean isMolarFraction(), which is true if the composition must be entered in molar variables,

and otherwise it is false.

The structure of the Vector vMixtures is as follows:

 String[] system={"lithium bromide","water"};
 vMixtures= new Vector();
 Object[]obj=new Object[2];
 obj[0]="LiBr-H2O";
 obj[1]= system;
 vMixtures.addElement(obj);

Note that isMolarFraction() serves only to define the mixture editor display: In all cases the composition transits
via the array fract_mol.

3 . 1 . 3 . 2 C R I T I C A L O R P S E U D O - C R I T I C A L V A L U E S :
G E T C R I T I C A L P A R A M E T E R S () M E T H O D

Critical values of a mixture depend on its composition and cannot be initialized once and for all. To transfer
them in Thermoptim the external mixture uses getCriticalParameters(), whose implementation for CTPLib
(actually pseudo-critical values) is given by:

public double [] getCriticalParameters () {
double [] props = new double [4];
if (nbComponents == 1) {
props [0] = compProp [0] .TC;
props [1] = compProp [0] .PC / 1.e5;
props [2] = compProp [0] .VC;
props [3] = compProp [0] .M;
}dropoff window
else {
props [0] = CalcTcMix ();
props [1] = CalcPcMix () / 1.e5;
props [2] = CalcVcMix ();
props [3] = CalcMMix ();
}dropoff window
return props;
}

The values are transferred when the substance is calculated.

For an external mixture, the calculation of the state of the substance from Thermoptim is relayed to void
rg.corps.ExtMixture.etat_complet (double TT, double pp, double x), which calculates from the class by:

refExternalSubstance.CalcPropCorps (TT, p, x, fractType, systType, fract_mol); // modRG 23/01

and then retrieves the values v = refExternalSubstance.getSubstProperties Vector ();

and updates all values, including the critical coordinates

When calculating refExternalSubstance.CalcPropCorps, critical values are determined by:

22

Thermoptim reference manual volume 3 November 2014

double [] getCriticalParameters prop = ();
subst.TC prop = [0];
subst.PC prop = [1];
subst.VC = prop [2];
subst.M = prop [3];

getCriticalParameters()returns the correct values.

3 . 1 . 3 . 3 F I L E S A S S O C I A T E D W I T H E X T E R N A L
M I X T U R E S

As in the case of compound gases, the list of external mixtures is saved in a file called "mel_ext.txt", which is
updated each time a new mixture is created, and is used to initialize the substance selection screen.

external mixtures file
CO2_TEP TEPThermoSoft mixtures CO2 CO2;1.0;0.0
liqu pauvre TEPThermoSoft mixtures NH3-H2O ammonia;0.25;0.0 water;0.75;0.0
vap riche TEPThermoSoft mixtures NH3-H2O ammonia;0.75;0.0 water;0.25;0.0
mel pauvre TEPThermoSoft mixtures NH3-H2O ammonia;0.1;0.0 water;0.9;0.0
LiBrH2O LiBr-H2O external mixture LiBr-H2O lithium bromide;0.35;0.0
 water;0.65;0.0
Fin
Fin

3 . 1 . 3 . 3 E X A M P L E O F E X T E R N A L M I X T U R E : T H E
S Y S T E M L I B R - H 2 O

The system provides a simple example of how to define an external mixture. Later in the manual we will give a
more complex example on linking up with the Thermosoft TEP thermodynamic properties server, taking into
account the characteristics of the ThermoSoft database. Another example is the coupling with the TEP Lib SPT
which is detailed on the Thermoptim UNIT portal1. As the latter is written in Java, the coupling is particularly
simple.

Warning: this system is modeled in Thermoptim external classes in two ways: by the H2OLiBrMixture class as
an external mixture, and by the LiBrH2OMixture class as a simple external substance. In the latter case, the mass
fraction of LiBr X in the mixture uses the field usually devoted to the quality x.

In machines using the LiBr-H2O mixture, the difference in the vapor pressure between the solvent (LiBr) and the
solute (H2O) is such that we can set aside the mass fraction of the solvent in the vapor phase, which simplifies
the calculations. Note that it is common practice to define the parameters of the diagram of the LiBr-H2O
mixture as a function of the mass concentration in solvent (LiBr) and not in solute. Since water is likely to
crystallize at low temperatures, the mixture crystallization curve is often shown on the diagram, corresponding to
a lower operating limit for the machines.

For this pair, the ASHRAE2 proposes equations (1) and (2), set up by generalizing the refrigerant (water)
saturation pressure law to the mixture, in which the water temperature t' (°C) is replaced by a linear function of
the solution temperature t (°C). P, expressed based on a decimal logarithm, is the pressure in kPa, and X is the
mass fraction of the mixture in LiBr. These equations are valid in the following value intervals: -15 < t' < 110
°C, 5 < t < 175 °C, 45 < X < 70 %.

log(P) = C +
D,

t' + 273,15 +
E

(t' + 273,15)2
 (1)

1 http://www.thermoptim.org/sections/logiciels/thermoptim/ressources/serveur-proprietes/
2 ASHRAE, Fundamentals Handbook (SI), Thermophysical properties of refrigerants, 2001.

23

Thermoptim reference manual volume 3 November 2014

t' =

t - ∑
i=0

3

 Bi X
i

∑
i=0

3

 Ai X
i

 (2)

TABLE 1 COEFFICIENTS OF EQUATIONS 1 AND 2

A0 -2.00755 B0 124.937 C 7.05
A1 0.16976 B1 -7.71649 D -1596.49
A2 -3.13E-03 B2 0.152286 E -104095.5
A3 1.98E-05 B3 -7.95E-04

The constructor initializes the validity limits of the class and the Vector vMixtures, which in this case includes
just one system:

 public H2OLiBrMixture (){
 super();
 type=getType();
 M=29;PC=10;TC=350; //Attention: initialisations without physical sense
 Tmini=278.15; Tmaxi=448.15;
 chemForm="LiBr-H2O mixture";
 typeCorps=6;//external susbstance type isMixture
 vMixtures= new Vector();
 Object[]obj=new Object[2];
 obj[0]="LiBr-H2O";
 obj[1]=system;
 vMixtures.addElement(obj);
 }
 String[] system={"lithium bromide","water"};

The following methods define the class description, the software used (since it is not a TPS, the name is not
important in this case), the unit to be used to express the composition (in this case mass), the system proposed,
and the identifier of the class.

 public String getClassDescription(){
 return "external mixture class\nWatch out! the LiBr composition is to be expressed as mass
fractions";
 }

 public String getSoftware(){
 return "rg";
 }

 public boolean isMolarFraction(){
 return false;
 }
 public Vector getMixtures(){
 return vMixtures;
 }

 public String getType(){
 return "LiBr-H2O external mixture";
 }

24

Thermoptim reference manual volume 3 November 2014

The composition is updated based on the following method, which uses the intermediate variable x, equal to
X/100.

 public void updateComp(String systType, double[] fract_mass){
 //attention: x represents the mass fraction, even if it goes through fract_mol in ExtMixture
 selectedSyst=systType;
 x=fract_mass[0];
 }

The other methods (not presented here) define the calculations to be performed to solve equations (1) and (2).

3.1.4 Instantiation from external classes

It is possible to directly instantiate an external mixture from the external classes, for example in a driver. The
syntax is provided below. You simply have to indicate the system selected (here "LiBr-H2O"), and update the
composition (particularly simple in this case). The calculation and inversion functions can then be used directly,
and the results can be written in the output file, for example.

 H2OLiBrMixture monCorps=new H2OLiBrMixture ();//instantiation of the substance
 double[]fractmass={0.35,0.65};
 monCorps.updateComp("LiBr-H2O",fractmass);
 System.out.println("Enthalpie du mélange externe LiBr-H2O pour la composition massique :
"+fractmass[0]+" LiBr");
 for(int i=0;i<10;i++){
 double T=280+10*i;
 double[] val=monCorps.CalcPropCorps(T, 5, 0);
 System.out.println("T :\t"+T+" h : \t"+val[0]);
 }
which gives:

Enthalpy of the external misture LiBr-H2O for the mass composition: 0.35
LiBr
T : 280.0 h : -5.2873148226108775
T : 290.0 h : 21.108948694345447
T : 300.0 h : 47.56170686221427
T : 310.0 h : 74.07095968099561
T : 320.0 h : 100.63670715068943
T : 330.0 h : 127.25894927129576
T : 340.0 h : 153.9376860428146
T : 350.0 h : 180.67291746524594
T : 360.0 h : 207.46464353858977
T : 370.0 h : 234.3128642628461

3.1.5 Coupling class with the properties server TEP ThermoSoft

Coupling with a thermodynamic properties server (TPS) such as TEP ThermoSoft is much more complex, on the
one hand because this TPS is composed of calculation modules that are separate from Thermoptim, and what’s
more they are developed in another language, and on the other hand because the calculable thermodynamic
systems can vary greatly from case to case. We will illustrate the procedure using the example of the class
TEPThermoSoft.java.

3.1.5.1 Interface between Java and Delphi

The following method is used to load the library "TEPThermoSoftJava.dll" which constitutes the interface with
the Delphi environment in which TEP ThermoSoft was developed:

25

Thermoptim reference manual volume 3 November 2014

Next you must declare the Delphi methods callable from Java that serve to dialog between the two environments
(please refer to Appendix 1 for details on their function and syntax)

3.1.5.2 Definition of mixtures proposed by the TPS

Each TPS should define a list of the systems proposed, which is placed in the “mixtures” folder of the
installation directory. The standard format is as follows:

External mixture file
NH3-H2O NH3-H2O.mel 2 ammonia water M=44 PC=200 TC=404.128
 Tmaxi=1100 Tmini=216.7 T0=293.15 P0=1.
CO2 CO2.mel 1 CO2 M=44 PC=73.77 TC=304.128 Tmaxi=1100
 Tmini=216.7 T0=273.15 P0=36.59027
Fin
Fin

Each line contains:

- the name of the system as it appears on the Thermoptim selection screens (for example NH3-H2O)
- the mixture definition file, in the format of the properties server (for example NH3-H2O.mel)
- the number of components
- the name of the components as they appear on the Thermoptim selection screens
- the molar mass, the critical temperature and pressure, maximum and minimum temperatures for the

fluid, and the reference temperature and pressure values (for which h=u=s=0)

It is basically via the mixture definition file that the properties server is initialized. Thermoptim simply modifies
the composition and the state variables.

Note that this list contains the system “CO2” with just one component, i.e., a pure substance. The external
mixture mechanism also makes it possible to emulate a TPS to represent a pure substance by a more precise
model than the one used in Thermoptim. In this specific case, it is a dedicated equation that can be used in the
neighborhood of the critical point3.

The arborescence of the properties server directories can be set up at the user’s discretion. The only requirements
are that the dll links be placed in the installation directory and the list of systems proposed in the “mixtures”
folder. In the case of TEP ThermoSoft, this list in contained in the file “TEPThSoft.mix”.

The constructor of the class TEPThermoSoft.java is very similar to the class considered above:

3 W. Wagner, R. Span, A new equation of state for carbon dioxide covering the fluid region from the triple-point
temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data, 25(6):1509, 1996.

26

Thermoptim reference manual volume 3 November 2014

It introduces a Hashtable to be able to easily reference the existing external mixtures, and executes the method
getMixtures() which constructs the Vector of existing mixtures and the Hashtable, by analyzing the mixture file
"TEPThSoft.mix" using the method lect_data(). The same class can be used with various sets of mixtures
depending on the applications.

The three methods of the ExternalMixture interface are then defined, which does not pose any particular
problem.

The method updateComp must be able both to initialize the system correctly and update its composition. To do
so, it calls the Hashtable created by the constructor.

An example of how to calculate the saturation temperature is given below (bubble if x = 0, dew if x = 1). It
provides a good illustration of the call sequence to the TEP ThermoSoft methods documented in Appendix 1.
Schematically, we start by initializing the session and we load in the system in question, then we initialize the
pressure, converted from bars to Pascals, and the composition of the mixture. Depending on whether it is a pure
substance or a true mixture, the execution of the calculation differs slightly. The work session is closed to free up
resources, and the saturation temperature is returned to Thermoptim.

In order to accelerate the calculations, it is better to avoid opening and closing a session whenever possible.
Consequently, variants of certain methods utilizable only when a session is open have been implemented. They
differ from the others in that the term Session is added to their name.

In both cases, we have created two sister methods: getSatTemperature() and getSatTemperatureSession(). The
first manages the opening and closing of sessions, and second performs the calculations. This makes it possible
to directly call the second without reinitializing the system.

27

Thermoptim reference manual volume 3 November 2014

The other calculation methods implemented are more complex, specifically those that use functions involving
finding roots using the bisection method, but the principle is the same. We will refer to the comments
documenting the class for additional information.

3.1.5.3 Inversion of functions

The example below is for the method inverting the enthalpy equation to solve for T, when pressure is known.

Overall the procedure is similar: Upon initialization, a session is opened, and the system is loaded. The inversion
calculation can then be performed in this session, since the function f_dicho calls the version of CalcPropCorps
that does not open its own session. When the calculations are done, the session is closed.

There is one particularity of this inversion method: during a liquid-vapor equilibrium, for a pure substance, the
temperature determination is not enough. The vapor quality x must also be determined. It is calculated in
f_dicho, then loaded in X[0], which Thermoptim can access using the method getQuality() of ExtSubstance.

28

Thermoptim reference manual volume 3 November 2014

For the time being, only the vapor quality of pure substances is used by the Thermoptim internal classes, but, as
shown in the following section, the mechanism implemented in TEPThermoSoft.java is generic and allows the
external classes to access the composition of multi-component mixtures.

3.1.5.4 Example of calculating the external mixture (NH3-H2O)

TEP ThermoSoft proposes the pair NH3-H2O as a
mixture. In order to illustrate the calculations possible,
we have created a small class called
NH3_Absorption.java, which displays a screen of the
principal properties useful for calculating absorption
systems that use this mixture.

As usual for this application, the composition is entered
in mass variables.

In the example opposite, at 140° C for a mass fraction
of NH3 equal to 0.7, the point is located inside the
isobaric lens at 20 bars, the bubble and dew
temperatures are respectively 66.8 °C and 162.4 °C.

TEP ThermoSoft sends the liquid and vapor molar
fractions of NH3, as well as the mean vaporization rate.
Their values are sent by the array double[] X, which, in
the case of a pure substance, contains only the vapor
quality.

The code for performing the calculations in the class
NH3_Absorption.java illustrates the use of the array X
by an external class:

3.1.6 Thermodynamic charts of external mixtures

 External mixtures not being included in Thermoptim, the software does not provide their thermodynamic charts.
To overcome this limitation, we added a new chart type, called external mixture chart, which allows the use of
simplified entropy and (h,P) charts.

The preparation of the chart background can be made thanks to a special external class called
CreateMixtureCharts.java. You should refer to its documentation for further details on this topic.

The new charts are simplified compared to the others in that they show only the bubble and dew curves, as well
as a single set of isovalues, i.e. the isobars for the entropy chart, and the isotherms for the (h, P) chart.

These charts being a variation of vapor charts, their use is explained in the documentation of these.

Property calculator for the mixture NH3-H2O

29

Thermoptim reference manual volume 3 November 2014

3.2 External Processes

The structure of external classes was defined earlier in this manual: The class extThopt.TransfExterne inherits
from rg.corps.TransfoExt of Thermoptim and performs the interface, relaying the calculations at the level of an
abstract class (extThopt.ExtProcess) defining the basic methods, and subclassed by the different classes
introduced (for example extThopt.SolarCollector). We recommend that you refer to the API of
extThopt.TransfExterne and extThopt. ExtProcess to learn the syntax and function of the methods available. This
API is part of the development environment of the external classes available (in the folder api_extThopt).

We will begin by explaining the construction procedure implemented in Thermoptim, then we will show how to
create a new external component, by subclassing extThopt. ExtProcess.

3.2.1 Construction

3.2.1.1 Construction of an external process in Thermoptim

The construction procedure is as follows:

1) the user selects an external process from the list, which shows the index in the arrays of external classes

loaded in Thermoptim.
2) you load this class, which you transtype in ExtProcess, and encapsulate in an Object.

Class c=(Class)rg.util.Util.componentClasses[i];//you load the class of the external component
Constructor ct=c.getConstructor(null);//you carefully instantiate it with its constructor without an argument.
extThopt.ExtProcess ec=(extThopt.ExtProcess)ct.newInstance(null);
Object ob=ec;//you encapsulated it in an Object

3) you then instantiate the class TransfExterne, which inherits from ComposantExt, i.e., it is in fact a JPanel

containing the user interface defined in the external process.

JPanel1.remove(cType);
cType=new TransfExterne((Projet)Proj,ob, this);//we instantiate the external component
setupCType();//sets up the external user interface

which is done by the following constructor:

public TransfExterne(Projet proj, Object obj, TransfoExterne te){
 this.proj=proj;
 this.te=te;//we pass the ference to the TransfoExterne internal to Thermoptim
 ep= (ExtProcess)obj;//retrieves the external class instantiated in TransfoExterne
 ep.proj=proj;//retrieves the reference of the project
 Vector vSetUp=new Vector();
 vSetUp.addElement(te);//sends the reference to the TransfoExterne
 vSetUp.addElement(ep.JPanel1);//loads the interface
 vSetUp.addElement(ep.thermoCouplerTypes);//definition of the types of thermocouplers required
 setUpFrame(vSetUp);//execution of setCompFrame();
 ep.tfe=this;
}

4) if the construction is done while the project file is being read, the process parameters are updated

5) when a project is completely loaded, Thermoptim executes in each external component a special method

called init() which performs initializations by referencing other instantiated external components (see
section 3.4). This makes it possible to synchronize their methods.

3.2.1.2 Creating an external process

30

Thermoptim reference manual volume 3 November 2014

To create an external process, simply subclass extThopt.ExtProcess. Let us look at the example of the class
SolarCollector (we have provided only part of the construction of the graphic interface here).

public SolarCollector (){
 super();
 JPanel1.setLayout(null);//Layout of the JPanel
 JPanel1.setBounds(0,0,400,300);//dimensions of the JPanel (generally standard)
 JLabel1.setText("glass transmittivity");//definition of the first label
 JPanel1.add(JLabel1);
 JLabel1.setBounds(0,0,164,24);
 JPanel1.add(tau_value);//definition of the first editable text field for entering the glass
transmittivity
 tau_value.setBounds(164,0,124,24);
 tau_value.setText("0.8");
 type=getType();//type of process
 thermoCouplerTypes=new String[0];//no thermocoupler connected
 }

 public String getType(){
 return "solar collector";
 }

 public String getClassDescription(){

return "flat plate solar collector (without thermocoupler)\n\nauthor : R. Gicquel january 2003\n\nRef
: note MODÉLISATION D'UN CAPTEUR SOLAIRE THERMIQUE";

 }

3.2.2 Updating and calculating the process

Here we refer to the example of the class SolarCollector, whose model is presented in the note
“SolarCollector.doc”

The sequence of operations is as follows:

1) update the component before calculation by loading the values of the process and the upstream point
2) read the parameters on the external component screen
3) calculate the power used and the state of the downstream point
4) calculate the thermal loads of the thermocouplers
5) update the external component screen

Let us now look at the practical problems encountered during each of these steps. A few portions of the code are
provided below, but we recommend reading the rest of this note while referring to the entire class
SolarCollector.java.

1) update the component by loading the values of the process and the upstream point

The problem here is that an external component does not have direct access to the simulator variables: these
values are obtained by very general methods, which construct Vectors with different structures depending on the
desired object.

The procedure is not complicated, but it must be followed carefully:

String[] args=new String[2]; //array of arguments
args[0]="process";//type of element desired (a process in this case)
args[1]=tfe.getCompName();//name of the process (obtained by the reference tfe)
Vector vProp=proj.getProperties(args);//Project method given in Appendix 2
Double f=(Double)vProp.elementAt(3);
double flow=f.doubleValue();//flow rate value, automatically propagated from the upstream process
String amont=(String)vProp.elementAt(1);//name of the upstream point

31

Thermoptim reference manual volume 3 November 2014

getPointProperties(amont);//automatic decoding of the Vector (method of the ExtProcess class)
Tamont=Tpoint;//here T1

The method getPointProperties() of ExtProcess automatically loads the state of a point in easily manipulable
values, called Tpoint, Point, lecorps… The method is given below.

public void getPointProperties(String nom){
 String[] args=new String[2];
 args[0]="point";//type of the element (see method getProperties(String[] args))
 args[1]=nom;//name of the process (see method getProperties(String[] args))
 Vector vProp=proj.getProperties(args);
 lecorps=(Corps)vProp.elementAt(0);
 nomCorps=(String)vProp.elementAt(1);
 Double y=(Double)vProp.elementAt(2);
 Tpoint=y.doubleValue();
 y=(Double)vProp.elementAt(3);
 Ppoint=y.doubleValue();
 y=(Double)vProp.elementAt(4);
 Xpoint=y.doubleValue();
 y=(Double)vProp.elementAt(5);
 Vpoint=y.doubleValue();
 y=(Double)vProp.elementAt(6);
 Upoint=y.doubleValue();
 y=(Double)vProp.elementAt(7);
 Hpoint=y.doubleValue();
 y=(Double)vProp.elementAt(9);
 DTsatpoint=y.doubleValue();
 String dum=(String)vProp.elementAt(8);
 isTsatSet=Util.lit_b(Util.extr_value(dum));
 dum=(String)vProp.elementAt(10);
 isPsatSet=Util.lit_b(Util.extr_value(dum));
}

2) read the parameters on the external component screen

The package extThopt provides a number of simple but robust methods for converting the Strings displayed in
the JTextField fields used on the graphic interface to doubles, and vice versa for displaying the doubles in these
fields. They are implemented as static methods of the extThopt.Util class (see Appendix 3):

P=Util.lit_d(P_value.getText());
A=Util.lit_d(A_value.getText());
tau=Util.lit_d(tau_value.getText());
K=Util.lit_d(K_value.getText());
Tex=Util.lit_d(Tex_value.getText())+273.15;

3) calculate the power used and the state of the downstream point

We begin by estimating the Cp of the heat-conducting fluid by making a limited development of the enthalpy
function, which means we use the method CalcPropCorps() of the package Corps and the method
getSubstProperties() of ExtProcess, which automatically loads the state of a point in easily manipulable values,
called Tsubst, Psubst, etc. :

public void getSubstProperties(String nom){
 String[] args=new String[2];
 args[0]="subst";//type of the element (see method getProperties(String[] args))
 args[1]=nom;//name of the process (see method getProperties(String[] args))
 Vector vProp=proj.getProperties(args);
 Double y=(Double)vProp.elementAt(0);
 Tsubst=y.doubleValue();//temperature
 y=(Double)vProp.elementAt(1);

32

Thermoptim reference manual volume 3 November 2014

 Psubst=y.doubleValue();//pressure
 y=(Double)vProp.elementAt(2);
 Xsubst=y.doubleValue();//value
 y=(Double)vProp.elementAt(3);
 Vsubst=y.doubleValue();//mass volume
 y=(Double)vProp.elementAt(4);
 Usubst=y.doubleValue();//internal mass energy
 y=(Double)vProp.elementAt(5);
 Hsubst=y.doubleValue();//mass enthalpy
 y=(Double)vProp.elementAt(6);
 Ssubst=y.doubleValue();mass entropy
y=(Double)vProp.elementAt(7);
 Msubst=y.doubleValue();//molar mass
 Integer i=(Integer)vProp.elementAt(8);
 typeSubst=i.intValue();//type of substance (1 for water, 2 for a vapor, 3 for a pure gas, 4 for a compound
gas, 5 for an external substance)
 y=(Double)vProp.elementAt(13);
 ChemExerSubst=y.doubleValue();
 }

Then we can calculate the Cp as follows:

double H=Hpoint;//enthalpy of the upstream point
lecorps.CalcPropCorps(Tpoint+1, Ppoint, Xpoint);// recalculates the upstream substance by a Thermoptim
function
getSubstProperties(nomCorps);//retrieves the recalculation values (method of the ExtSubstance class)
double Cp=(Hsubst-H);//estimated value of Cp

We then calculate an estimated Taval value to be able to determine the absorbed thermal power Qex:

double DT0=tau*P/K-Tamont+Tex;
double T=Tamont+(DT0)*(1-Math.exp(-K*A/flow/Cp));
double DT=T-Tpoint;
double Qex=Cp*DT*flow;

We determine the value of the mass enthalpy of the downstream point, then we invert this equation to determine
the exact value of Taval (method of the Corps class)

double hAval=Qex/flow+Hpoint;
Tpoint=lecorps.getT_from_hP(hAval,Ppoint);

getSubstProperties(nomCorps);//retrieves the recalculation values (method of the ExtProcess class)
Xpoint=Xsubst;//updates the value of the vapor quality in case the state is diphasic

4) calculate the thermal loads of the thermocouplers

In this simple example, there is no problem, since the component does not use a thermocoupler. Brief
instructions are given later in the manual, as well as in the section on external nodes.

5) update the external component screen

The Thermoptim method setupPointAval() updates the downstream point from the values loaded in a Vector
constructed here by the method getProperties() of ExtProcess:

tfe.setupPointAval(getProperties());

The solar collector yield value is then determined and displayed.

eff_value.setText(Util.aff_d(Qex/P/A, 4));

33

Thermoptim reference manual volume 3 November 2014

For this example, the updates before and after recalculation are very simple. In other cases, it may be necessary
to access other data from the simulator. We will explain how to do this below.

3.2.3 Moist calculations

To perform the calculations for moist gases from external classes, the method getPointProperties() of ExtProcess
retrieves the moist properties values of a point by the following variables:

Wpoint for the absolute humidity w, Epsipoint for relative humidity ε, Qprimepoint for specific enthalpy q',
Tprimepoint for adiabatic temperature t' (in °C), Trpoint for dew point temperature tr (in °C), VPrimepoint for
specific volume vs, Condpoint for condensates, and M_secpoint for the molar mass of the dry gas.

The method updatePoint given in the appendix forces the following moist calculations:

"setW and calculate all", sets w and calculates all of the moist properties
"setW and calculate q'", sets w and calculates all of the moist properties except t'
"setEpsi", which sets ε

"setEpsi and calculate", sets ε and calculates all of the moist properties
"calcWsat", calculates wsat and all of the moist properties except t'
"modHum", modifies the composition of the gas

3.2.4 Calculation of exergy balances

The external components can also be represented in a productive structure. Their exergy balance screen can be
configured (using String [] getExergyType ()) by the constructor of the external class, for the time being to
display, like that of "exchange" processes, three options and a value input field.

The choices made by the user are then transmitted to the external class for evaluation of getExergyBalance
(String [] args), defined below; they are saved in the structure file. If additional settings are required, it is always
possible to set them in the component's physical diagram screen.

Many exergy balance calculations of components pose no particular problem. It is however necessary to specify
carefully how their different elements should be taken into account in the overall balance, as the system
boundary is not same as that of a given component.

To calculate its exergy balance, each simulator component returns a double [] method getExergyBalance (String
[] args) which includes the seven values to be taken into account in the overall balance (five ports plus exergetic
efficiency and irreversibility).

For Thermoptim core elements, the rules for weighting the values of τ+
 and Δxq

+
 provided to the cycle can be

fixed once and for all, but it is not the same for external components, for which the designer must always specify
which values should be included in the overall exergy balance sheet.

The models of components that can be implemented are so diverse that it is not possible to predict all cases. This
is why the external components refer, in addition to the previous seven values, to two coefficients ranging
between 0 and 1 (tauPlusFactor and deltaXhPlusFactor) which allow one to weight the fraction of the useful
work and positive heat exergy supplied to the cycle.

The ExtProcess class includes a default implementation of String [] getExergyType() and double []
getExergyBalance (String [] args), to be sub-classed by external components. The exergy fluid properties must
be calculated from the values of enthalpy, entropy and T0 provided by getSubstProperties ().

The exchange of getExergyBalance between Thermoptim and the external components is done by public double
[] getCompExergyBalance (String [] args).

For the calculation of exergy of incoming and outgoing flows, a reference value is taken for T0 and 1 bar.

34

Thermoptim reference manual volume 3 November 2014

In PointCorpsDemo, its implementation without argument is as follows:

// calculates the reference exergy, chemical exergy not to be accounted
public double getExergyReference (){//modRG oct04//modRG exerg
 lecorps.CalcPropCorps(Util.T0Exer,1,1);
 return lecorps.H-Util.T0Exer*lecorps.S;
}

In ExtProcess it is, with two arguments:

 /**
 * returns exergy reference value and initializes T0Exer
 */
 public double getExergyReference(Corps corps,String nomCorps){
 String[] args=new String[2];
 args[0]="project";//type of the element (see method getProperties(String[] args))
 args[1]="";//name of the process (see method getProperties(String[] args))
 Vector vProp=proj.getProperties(args);
 Double f=(Double)vProp.elementAt(2);
 T0Exer=f.doubleValue();
 corps.CalcPropCorps(T0Exer,1.0,0);
 getSubstProperties(nomCorps);
 return Hsubst-T0Exer*Ssubst;
 }

Default implementations for the external components are given below:

The ExtProcess class includes a default implementation of getExergyType () and getExergyBalance (String []
args), to be sub-classed by external components. The fluid exergy properties are given by getSubstProperties ().

double tauPlus,deltaXhPlus,xqPlus,tauProduct,deltaXhProduct,etaExer,deltaXhi;

 void setExergyExtensor(boolean isExtensor){
 if(isExtensor)exergyType="extensor";
 else exergyType="reductor";
 }
 public String[] getExergyType(){//modRG exerg
 String[] type=new String[9];
 type[0]=exergyType;//extensor or reductor
 type[1]="false";//affiche JCheckExtSource
 type[2]="External source";//label JCheckExtSource
 type[3]="false";//affiche JCheckIntExchange
 type[4]="Internal exchange";//label JCheckIntExchange
 type[5]="false";//affiche JCheckValuableExergy
 type[6]="Valuable exergy";//label JCheckValuableExergy
 type[7]="false";//affiche champ d'entrée de valeur
 type[8]="Source T (°C)";//label sourceT_value
 return type;
 }

 public double[] getExergyBalance(String[]args){//modRG exerg
 double[] exergyBalance=new double[9];
 exergyBalance[0]=tauPlus;
 exergyBalance[1]=deltaXhPlus;
 exergyBalance[2]=xqPlus;
 exergyBalance[3]=tauProduct;
 exergyBalance[4]=deltaXhProduct;
 exergyBalance[5]=etaExer;
 exergyBalance[6]=deltaXhi;

35

Thermoptim reference manual volume 3 November 2014

 exergyBalance[7]=tauPlusFactor;
 exergyBalance[8]=deltaXhPlusFactor;
 return exergyBalance;
 }

3.2.4.1 Class SolarConcentratorCC

A solar panel converts the solar flux received in heat transmitted to the fluid flowing through it. This is therefore
an exergy extensor, and in the SolarConcentratorCC class constructor, the type of UPD is set by
setExergyExtensor (true);

The exergy calculations can be performed as follows:
 double Xh0=getExergyReference(refrig);
 tauPlus=0;
 deltaXhPlus=0;
 tauProduct=0;
 xqPlus=P/1000*Sc*(1-T0Exer/5800);//le soleil est une source à 5800 K
 deltaXhProduct=(Haval-Hamont-T0Exer*(Saval-Samont))*flow;
 deltaXhi=xqPlus-deltaXhProduct;
 etaExer=deltaXhProduct/xqPlus;

3.2.4.2 Class FluidEjector

An ejector is modeled as an external mixer. Depending on whether one is interested in motor or entrained flow,
an exergy reductor or an exergy extensor. However, it may also simply be considered as a simple mixer, which
avoids associating a junction or a branch.

To ensure that the incoming exergy is not considered as an external input to the cycle, the following two lines are
inserted in the constructor:

deltaXhPlusFactor = 0;
tauPlusFactor = 0;

The exergy calculations can be performed as follows:
 double Xhmi=Hmi-T0Exer*Smi-Xh0-getExergyReference(refrig,nomCorps);
 double Xhmsi=Hsi-T0Exer*Ssi-Xh0-getExergyReference(refrig,nomCorps);
 double Xhsr=Hd_is-T0Exer*Smix-Xh0-getExergyReference(refrig,nomCorps);
 deltaXhProduct=msr*Xhsr;
 deltaXhPlus=msi*Xhmsi+mi*Xhmi;
 etaExer=deltaXhProduct/deltaXhPlus;
 deltaXhi=deltaXhPlus-deltaXhProduct;

3.2.4.3 Class SOFCH2outlet

A fuel cell converts hydrogen into electricity. It behaves like a quadrupole receiving two input fluids, and out of
which come the other two. The quadrupole is formed by combining an input mixer and an output divider, the
two being connected by a process-point which plays a passive role. The calculations are performed by the output
divider.

The exergy calculations can be performed as follows:
 double DH0=-241830;//kJ/kmol H2 vapeur
 double DH0_vap=-285830;//kJ/kmol H2 liquide
 double DG0=-237160;//kJ/kmol H2
 double elecPower=tau*DG0*epsi*molFlowH2;
 double Qlib=-tau*DH0*molFlowH2+elecPower;
 tauProduct=-elecPower;
 etaExer=elecPower/DH0/molFlowH2;
 deltaXhi=(1-etaExer)*tauProduct;

36

Thermoptim reference manual volume 3 November 2014

3.2.5 Managing Energy Types

It may first be necessary to manage the assignment of energy types in a more complex manner than in the
processes of Thermoptim’s basic set, which are basically mono-functional. For the processes, the energies used
are either purchased, useful, or other. In an external process, things may be different, with for example a thermal
load in purchased energy and a power in useful energy.

The method updateProcess() of ComposantExt assigns the desired values to the different types of energy. It is
easily used with the method setEnergyTypes of ExtThopt:

tfe.updateProcess(setEnergyTypes(tfe.getCompName(),useful,purchased,other));

public Vector setEnergyTypes(String process, double useful,double purchased, double other){
 Vector vEner=new Vector();
 vEner.addElement(process);//process name
 vEner.addElement(new Double(useful));//useful energy
 vEner.addElement(new Double(purchased));//purchased energy
 vEner.addElement(new Double(other));//other energy
 return vEner;
}

3.2.5 Access to other elements of the simulator

Access to upstream and downstream processes

The names of the upstream and downstream processes are accessible by the elements 9 and 10 of the Properties
Vector of the external process.

String[] args=new String[2];
args[0]="process";//type of the element (see method getProperties(String[] args))
args[1]=tfe.getCompName();//name of the process (see method getProperties(String[] args))
Vector vProp=proj.getProperties(args);
String transfoAmont=(String)vProp.elementAt(9);//name of the upstream process (or "null" if none)
String transfoAval=(String)vProp.elementAt(10);//name of the downstream process (or "null" if none)

Once the name has been obtained, we access its properties by sending it to args[1] in proj.getProperties(args). In
this way we can recursively run through the upstream and downstream processes directly connected to a process.

This is the mechanism used to update the processes upstream and downstream of the external nodes in the
method public void updateStraightlyConnectedProcess(String startProcess, String name, boolean downstream,
boolean inletPoint, boolean outletPoint, boolean updateT, double T, boolean updateP, double P, boolean
updateX, double x) of ExtNode.

The example provided in the note “CycleLiBrH2O.doc” that is partially reprinted as an illustration of external
nodes shows how to use these mechanisms.

Let us note in passing that vProp=proj.getProperties(args) also gives access to certain global properties of the
project if args[0]="project" (see Appendix 2), and specifically the flow unit. This is a way to verify that the flow
and power units implicitly or explicitly used in the external class are compatible with those of the project, and to
send a message otherwise.

Thermocouplers

Given that thermocouplers are a type of heat exchanger, it is valuable to define them by values such as
effectiveness ε, UA, NTU or LMTD, that can be calculated using similar equations.

37

Thermoptim reference manual volume 3 November 2014

The external component must send to each of its thermocouplers the equivalent values for flow rates, inlet and
outlet temperature and thermal energy transferred, which they must take into account in their calculations.
Specific methods were placed in the interface for this purpose.

However, the analogy with exchanges has certain limits: for example, temperature crossovers unacceptable in an
exchanger may occur in a thermocoupler, leading to absurd values.

So it is best to transmit values that are unlikely to lead to this type of situation. One possible solution is to
assume that the thermocoupler is isothermal for calculations of characteristics that are similar to exchanger
characteristics, as in the model selected from the absorber and the desorber in the example presented in the note
"TrigenMicroTAG.doc".

To be able to accept multiple couplings, all the heatConnectable define an array of acceptable thermocoupler
types (in the example above: String[]thermoCouplerTypes={"absorber","desorber"}). The calls are then done
using the type of thermocoupler as the identifier, as in:
public double getInletTemperature(String thermoCouplerType);

When the array has dimension 1 and the heatConnectable is a process, the management can be simplified (see
below). Otherwise, the heatConnectable has to be able to distinguish which thermocoupler is calling it, in order
to know what to send it back by the interface methods. It must therefore register with each thermocoupler when
the thermocoupler is created. This assumes that a consistency check is performed during the initial construction,
and this check must be repeated for each subsequent reconstruction.

For any external component there are also additional difficulties, given that its access to internal values is limited
(the cases mentioned here are relative to process, but the problems also arise for nodes):

- the dimension of the array of acceptable thermocoupler types and those that are associated to it is not

necessarily known, which means it must be initialized specifically in the method setCompFrame(Object obj)
of ComposantExt, which is the pivot class where a large part of the exchanges between the internal part of
the code and the external components are performed.

- the thermocoupler updates are done by the non-obfuscated method of TransfoExterne
updateThermoCouplers(Vector vTC)

- the exchanges of information between the heatConnectable and its thermocouplers pass through Vectors,
and it must be able to distinguish the different values depending on the role of each thermocoupler.

The method updateThermoCoupler() of ExtProcess performs the updates:

updateThermoCoupler(String type, double Tin, double Tout, double Q, double flow)

It sends the update elements to the thermocoupler via a Vector constructed by the methods of the ExtProcess
class:

protected Vector getThermoCouplerVector(String type, double Tin, double Tout, double Q, double flow){
 Vector vTC=new Vector();
 vTC.addElement(type);
 Double d=new Double(Tin);
 vTC.addElement(d);
 d=new Double(Tout);
 vTC.addElement(d);
 d=new Double(Q);
 vTC.addElement(d);
 d=new Double(flow);
 vTC.addElement(d);
 return vTC;
}

Though it is not recommended, we can avoid using the method updateThermoCoupler() for a simple external
process, with just one thermocoupler and for which the inlet and outlet temperatures, thermal load and flow rate
values can be directly obtained from the values of the process. However, if there are more than one
thermocouplers connected to the same process, each one must be updated after each recalculation.

38

Thermoptim reference manual volume 3 November 2014

Note that a thermocoupler can be initialized only by the external component that it depends on. When a project is
loaded, the state of the thermocouplers is updated only when the external components are calculated. To avoid
problems during the first automatic recalculation of a project, we recommend performing a calculation of the
external components equipped with thermocouplers using the method init() (see section 3.2.1.1).

Nodes

To identify the nodes to which a process can be connected, it is necessary to get the project nodes using the
method proj.getNodeList(), retrieve the structure of each one by calling proj.getProperties() with the right
arguments, and see if the name of the process appears among the names of the branches or the main process of
the node. It’s a bit laborious, but even from within Thermoptim, this is how it has to be done.

Accessing the diagram editor

It is also possible to access the content of the diagram editor from the following Project methods, which are
somewhat difficult to use, especially the second one:

getEditorComponentList(): provides the list of components present in the diagram editor, in the form
"name"=componentName+tab+"type"=componentType. This list can be extracted easily using
Util.extr_value("name") and Util.extr_value("type").

getConnectionCode(String[] args): sends a code showing whether two components of the editor are connected or
not: 1 if the component 1 is upstream of component 2, -1 if it is downstream, and 0 if they are not connected.
The structure of the arguments is as follows:
 String[] args=new String[4];
 args[0]="Expansion";//type of component 1
 args[1]="turbine";//name of component 1
 args[2]="Exchange";//type of component 2
 args[3]="régen gaz";//name of component 2

The type codes are those used in the saved project files.

3 . 2 . 6 S A V I N G A N D L O A D I N G T H E P A R A M E T E R S O F
T H E M O D E L

It is possible to save the parameters of the external components in the usual Thermoptim project files, and
subsequently read them.

public String saveCompParameters()
public void readCompParameters(String ligne_data)

The only constraint is that all of the parameters of the external component must fit on one line, in a format
compatible with that used in the software basic set: the different save fields are separated by tabs.

ExtThopt.Util provides a generic method for associating an identifying code to the value of a parameter:

public static String extr_value(String ligne_data, String search)

The save is done in the form “parameter-value” and the search is done in the same way:

valeur=Util.lit_d(Util.extr_value(ligne_data, "parameter"));

If the parameters of the component are too complex to be saved in this way, the user can use this mechanism to
save the name of a specific parameter file and then read that file as necessary.

3 . 3 E X T E R N A L N O D E S

39

Thermoptim reference manual volume 3 November 2014

We recommend that you refer to the API of extThopt.MixerExterne, extThopt.DividerExterne,
extThopt.ExtMixer, extThopt.ExtDivider and extThopt.ExtNode to learn about the syntax and functions of all of
the methods available. This API is part of the external class development environment available to you (in the
folder api_extThopt).

3 . 3 . 1 C O N S T R U C T I O N

The construction of an external node is identical to that of an external process.

3 . 3 . 2 U P D A T I N G A N D C A L C U L A T I N G A N O D E

Here we refer to the example of the class Absorber, a model of which is presented in the specific note called
"CycleLiBrH2O.doc" presenting the internal model of an absorption cycle.

The sequences of operations are as follows:

1) consistency check and updating of the node before calculation
2) reading the parameters on the external component screen
3) updating the processes connected to the external node
4) updating and calculating the associated thermocouplers
5) updating the screen of the external component
6) saving and loading the parameters of the model

Let us now look at the practical problems encountered during each of these steps. A few portions of the code are
provided below, but we recommend reading the rest of this note while referring to the entire class Absorber.java.

1) consistency check and updating of the node before calculation

There are several difficulties involved:

- first, it is highly important to make sure that the node is correctly constructed, i.e. that the branches and

main process are indeed what the model designer expects. Since there is no consistency check for this in the
diagram editor, a user can very easily make a mistake in describing the diagram.

- next, an external component has no direct access to the variables of the simulator: these values are obtained
by very general methods, which construct Vectors with different structures depending on the desired object.

Consequently, the first step consists of checking the consistency of the node construction. To do this, the
designer has a method of the ExtNode class, getNodeStructure(), which decodes the structure of the node, by
loading in a String called mainProcess the name of the main process, and in a String Array called nomBranches[]
the names of the processes of the different branches, the number of which corresponds to the dimension of the
array.

The designer must program a method (called checkConsistency() in our example) in which he runs through the
various processes of the node, performing all the tests he wants, and at the same time updating the inlet
parameters of his model.

40

Thermoptim reference manual volume 3 November 2014

For example, for the absorber, the method is as follows (to facilitate subsequent processing, we decided to load
the names of the processes into easily identifiable Strings called richSolutionProcess, refrigerantProcess and
poorSolutionProcess, and the names of the points into richSolutionPoint, refrigerantPoint and
poorSolutionPoint):

private void checkConsistency(){
 String[] args=new String[2];
 Vector[] vBranch=new Vector[2];
 isBuilt=true;
 poorSolutionProcess="";
 refrigerantProcess="";
 if(nBranches!=2){//first test to check the number of branches
 String msg = "Error on the number of branches which is "+nBranches+" instead of 2";
 JOptionPane.showMessageDialog(me, msg);
 isBuilt=false;
 }
 else{
 for(int j=0;j<nBranches;j++){
 args[0]="process";//type of the element (see method getProperties(String[] args))
 args[1]=nomBranche[j];//name of the process (see method getProperties(String[] args))
 vBranch[j]=proj.getProperties(args);//loads the corresponding process
 String aval=(String)vBranch[j].elementAt(2);//gets the downstream point name
 getPointProperties(aval);//direct parsing of point property vector
 String nom=nomCorps;
 //Check the substance at inlet //checks the name of the substance
 System.out.println(" ligne "+j+" nomCorps "+nomCorps);
 if(nom.equals("LiBr-H2O mixture")){//if it is a mixture, the poor solution was detected
 poorSolutionProcess=nomBranche[j];

External mixer representing an absorber, with its connections

41

Thermoptim reference manual volume 3 November 2014

 poorSolutionPoint=aval;
 //initialise the inlet variables
 Tsp=Tpoint;
 Psp=Ppoint;
 Hsp=Hpoint;
 Xsp=Xpoint;
 Double f=(Double)vBranch[j].elementAt(3);
 msp=f.doubleValue();
 }
 if(nom.equals("eau")){// if it is water, refrigerant was detected
 refrigerantProcess=nomBranche[j];
 refrigerantPoint=aval;
 //initialise the inlet variables
 Prefr=Ppoint;
 Hrefr=Hpoint;
 Trefr=Tpoint;
 Double f=(Double)vBranch[j].elementAt(3);
 mr=f.doubleValue();
 }
 }
 if((refrigerantProcess.equals(""))||(poorSolutionProcess.equals(""))){//otherwise there is an error
 String msg = "Error on at least one of the branch substances";
 JOptionPane.showMessageDialog(me, msg);
 isBuilt=false;
 }
 }
 richSolutionProcess=mainProcess;
 args[0]="process";//type of the element (see method getProperties(String[] args))
 args[1]=richSolutionProcess;//name of the process (see method getProperties(String[] args))
 Vector vPropMain=proj.getProperties(args);
 Double f=(Double)vPropMain.elementAt(3);
 msr=f.doubleValue();
 String amont=(String)vPropMain.elementAt(1);//gets the upstream point name
 getPointProperties(amont);//direct parsing of point property vector
 richSolutionPoint=amont;
 Tsr=Tpoint;
 Psr=Ppoint;
 Hsr=Hpoint;
 Xsr=Xpoint;
 String nom=nomCorps;

 //Check the substance at inlet
 if(!(nom.equals("LiBr-H2O mixture"))){//also check that the main process has the right substance
 String msg = "Error on main process substance,which is "+nomCorps+" instead of LiBr-H2O
 mixture";
 JOptionPane.showMessageDialog(me, msg);
 isBuilt=false;
 }
}

2) reading the parameters on the external component screen

The package extThopt provides a number of simple but robust methods for converting to doubles the Strings
displayed in the JtestField fields used on the graphic interface, and vice versa for displaying the doubles in these
fields. They are implemented as static methods of the extThopt.Util class:

Tabs=Util.lit_d(Tabs_value.getText())+273.15;

3) updating the processes connected to the external node

42

Thermoptim reference manual volume 3 November 2014

The processes associated with the node are updated in Thermoptim by the methods updateMixer(Vector vTC)
and updateDivider(Vector vTC), which, in order to account for all possible cases, update the node and the
process flow rates, as well as the upstream points of the outlet processes and the downstream points of the inlet
processes.

The designer of the external node must therefore correctly configure the Vector which passes as an argument. To
do so, he can use two generic methods of ExtMixer and ExtDivider classes:

- updateMixer(Vector[]vTransfo,Vector[]vPoints, double TGlobal, double hGlobal)
- updateDivider(Vector[]vTransfo,Vector[]vPoints, double TGlobal, double hGlobal)

to which he must provide Vector arrays for the processes and points of each branch and the main vein, as well as
the global temperature and enthalpy values.

To set up the Vectors, ExtNode has a generic method:

void setupVector(String process, String point, int i, double m, double T, double P, double X)

i is the index of the two Vectors, process and point are the names of the process and the point, m is the flow rate
of the process, T is the temperature, P is the pressure and X is the vapor quality of the process point closest to the
node.

In our example, the solution was to use three intermediate methods to set up the Vectors:
- setupRichSolution(double m, double T, double P, double X)
- setupPoorSolution(double m, double T, double P, double X)
- setupRefrigerant(double m, double T, double P, double X)

Then size the Vector arrays defined in ExtMixer and run updateMixer():

vTransfo= new Vector[nBranches+1];
vPoints= new Vector[nBranches+1];
setupRichSolution(msr,Tabs,Psr,Xsr);
setupPoorSolution(msp,Tsp,Psp,Xsp);
setupRefrigerant(mr,Trefr,Prefr,1);
updateMixer(vTransfo,vPoints,Tsr,Hsr);

For routine cases, once the flow rates and the upstream or downstream points of the processes linked to the node
have been updated, Thermoptim propagates the recalculation of the various elements using the automatic
recalculation engine. However, this may not suffice and the node designer may have to propagate the updates
himself. In fact, this is true in our example for the propagation of the refrigerant concentration value of the
mixture LiBr-H2O. This value is stored in what is normally the vapor quality, which is never propagated
automatically.

In this case, the designer must look at all the points downstream and upstream of the one whose composition was
modified, to make sure that they have been correctly updated as well. He can use the method
updateStraightlyConnectedProcess() of the ExtNode class, which recursively runs through the processes
connected upstream and downstream of the node:
updateStraightlyConnectedProcess(richSolutionProcess, richSolutionProcess,
 false,//boolean downstream,
 true,//boolean inletPoint,
 true,//boolean outletPoint,
 false,//boolean updateT,
 0,//double T,
 false,//boolean updateP,
 0,//double P,
 true,//boolean updateX,
 Xsr);

4) updating and calculating the associated thermocouplers

43

Thermoptim reference manual volume 3 November 2014

Refer to section 3.2.3 on external processes for a general explanation on updating thermocouplers.

The objective is for the component to send to each of its thermocouplers the equivalent values for flow rates,
inlet and outlet temperature and thermal energy transferred, which they must take into account in their
calculations.

The method updateThermoCoupler() of the ExtMixer or ExtDivider classes performs the updates:

updateThermoCoupler("absorber", Tabs, Tabs, Qabs, msr);

For example, here we assumed that the absorber is at temperature Tabs, that it is receiving thermal load Qabs and
that it is supplied with a flow rate msr. If we had not taken the temperature of the absorber as a reference for the
exchange calculations, keeping the temperatures of the steam entering and exiting the external process, we would
have ended up with an unacceptable temperature crossover resulting in an error diagnosis by Thermoptim.

Unlike external processes, the update should always be done with the method updateThermoCoupler(), even for
external nodes using only one thermocoupler.

5) updating the screen of the external component

Refer to the section on external processes.

3 . 3 . 3 M A N A G I N G E N E R G Y T Y P E S

As in the case of external processes, it may be necessary to manage the assignment of energy types of an external
node, whereas this problem does not arise for the nodes of the Thermoptim basic set.

To avoid making the existing system more cumbersome, the solution is to artificially assign the desired values to
the different types of energy of the main vein of the external node (see section 3.2.3).

The method updateProcess() of the ComposantExt class can do this, provided that the main vein is a process
point. Otherwise, the energy types set will be reinitialized each time a recalculation is performed.
For example the Desorber class could set its thermocoupler load as purchased energy by:

de.updateProcess(setEnergyTypes(richSolutionProcess,0,Qgen,0));

3 . 3 . 4 S A V I N G A N D L O A D I N G T H E P A R A M E T E R S O F
T H E M O D E L

Refer to the section on external processes.

3 . 4 A C C E S S T O I N S T A N C E S O F E X T E R N A L N O D E S
A N D P R O C E S S E S

The preceding sections and Appendix 1 explain how to access the various unprotected instances of Thermoptim.
The procedures, which are relatively cumbersome, are limited due to the internal consistency constraints of the
software.

However, an external component developer may wish to have full access to the classes he creates, in order to
synchronize the calculations among them. He can do this with the getExternalClassInstances() method of the
Project class, which builds a Vector provided in Appendix 2, containing the various instantiated external nodes
and processes, with an identifying description.

As an example, the external node of the main vein “myProcess” and of the type “myType” can be obtained by
the following code:

44

Thermoptim reference manual volume 3 November 2014

MaClasse monInstance ;
Vector vExt=proj.getExternalClassInstances();
 for(int i=0;i<vExt.size();i++){
 Object[] obj=new Object[6];
 obj=(Object[])vExt.elementAt(i);
 String type=(String)obj[0];
 if(type.equals("node")){
 String main=(String)obj[4];
 String nodeType=(String)obj[3];
 if((main.equals(myProcess))&&((nodeType.equals("myType ")))){
 myInstance=(MyClasse)obj[1];
 myInstanceName=(String)obj[2];
 }
 }
 }

Once the instance is found, its members can be accessed under Java rules, according to their access modifiers
(public, protected, etc.)

3 . 5 E X T E R N A L D R I V I N G O F T H E R M O P T I M

External driving of Thermoptim has three main applications:

- to facilitate the development of external classes by testing them as they are being defined;
- to allow one to emulate Thermoptim from other applications, such as working in client-server mode;
- to give access to all of the non-protected libraries for various purposes (perform external calculations

between recalculations, guide a user in a training module, etc.).

In this volume, we focus primarily on the first two applications, Volume 4 is especially dedicated to the
technological design and the study of off-design behavior, for which the drivers reveal particularly interesting
because they can coordinate recalculations between different Thermoptim components, including solving
coupling equations that appear for this kind of study.

To make external driving possible, the main class of the simulator, Projet, can be subclassed, and a number of
non-protected methods can be overloaded to define specific calculations in addition to those of the basic set. The
details of these methods are provided in the Appendix. In the examples below, the class ProjetThopt inherits
from Projet, while the class Pilot is used to manage the driver.

To avoid confusion, these two classes have been defined in a separate package called “pilot”.

3 . 5 . 1 F A C I L I T A T I N G T H E D E V E L O P M E N T O F
E X T E R N A L C L A S S E S

The principle consists of instantiating Thermoptim from the external class Pilot, then launching it using the
appropriate methods of the class ProjetThopt. Windows users should refer to section 6 “External Class
Development Environment” which explains how to use the freeware JCreator to set up a small user-friendly
working environment.

In the example below, Pilot instantiates Thermoptim using the following code; only the first two methods are
necessary, and the other are given to illustrate certain possibilities:

runThopt();
loadProject();
listProcesses();
printProperties();
recalcProperties();

The mandatory methods are:

45

Thermoptim reference manual volume 3 November 2014

public void runThopt(){
 proj=new ProjetThopt();//instantiate Thermoptim
 proj.show();//display the simulator screen
 proj.openEditor();//display the diagram editor
}

public void loadProject(){
 String[] args=new String[4];
 args[0]="complet.prj";//project file name
 args[1]="complet.dia";//diagram file name
 args[2]=".";//working directory
 args[3]="noTest";//no save test if a project is already open
 proj.loadSelection(args);//load the example defined in args[]
}

In order for the external classes under development to be taken into account in Thermoptim, they must be
declared in the method getInternalClasses() of the ProjetThopt class. The figure below shows how to proceed.

The package extThopt includes a Util class that provides a number of utility methods for formatting numbers,
reading them onscreen, saving and reading values, finding roots using the bisection method, etc. (see Appendix
3).

Once the classes are defined, compile them, then launch the driver by typing F5. The example defined in the
method loadProject() of the Pilot class will be loaded when you click on the button "Run Thermoptim and load
example" on the driver screen.

3 . 5 . 2 P R O V I D I N G A C C E S S T O T H E U N P R O T E C T E D
L I B R A R I E S

There are two ways to drive Thermoptim: either completely from an external application that instantiates and
sets parameters for the software, or partially, for a given project.

In the first case, the principle consists of instantiating Thermoptim from the external class Pilot, then accessing
its libraries using the appropriate methods of the class ProjetThopt as explained in the previous section.

For example, you can instantiate a substance and calculate its thermodynamic properties, or display a
thermodynamic diagram and plot a pre-recorded cycle.

The driver acts as an independent application that can launch Thermoptim, which it considers as a library of
external classes, and build projects by instantiating Thermoptim classes. Since it knows these instances, it can
learn their state at any time. For the time being, it is impossible to access the driver from inside Thermoptim.

When the driver is launched, a window appears with buttons for launching Thermoptim and loading an example.
The corresponding class (Pilot) has a few basic methods for:

Method getInternalClasses() to load the tested classes in Thermoptim

46

Thermoptim reference manual volume 3 November 2014

launching Thermoptim: runThopt()
loading an example: loadProject()
accessing the properties of the simulator elements: proj.getProperties(args)
simplifying the parsing of the properties vectors: getSubstProperties(String nom), getPointProperties(String

nom), extr_value(String s), lit_b(String s)

In the second case, a specific driver class is assigned to a given project, and this class is instantiated when the
project is loaded. This class can coordinate the recalculations of the project according to specific rules. The
driver class is an extension of extThopt.ExtPilot, which derives from rg.thopt.PilotFrame. To be able to link it to
a project, it must first be made into an external class so that it can be loaded in Thermoptim when it is launched.
Once the project is open, select the driver class linked to it via the line “Pilot frame” in the Special menu. If the
project is saved, the name of the driver class is saved so that it can be instantiated when the project is loaded.

Driving Thermoptim

calcThopt(): launches a recalculation in Thermoptim
setupThopt(): instantiates the diagram editor and disables certain functions of Thermoptim
openEditor(): instantiates the diagram editor
setControls(): enables to take control between two recalculations, to modify certain parameters of

Thermoptim, for example
loadSelection(String[] args): loads the examples

Accessing the simulator

String[] getHxList (): list of the exchangers of the project
String[] getNodeList (): list of the nodes of the project
String[] getPointList (): list of the points of the project
String[] getProcessList(): list of the processes of the project
String[] getSubstanceList (): list of the substances of the project
Vector getProperties(String[] args): properties Vector. Its structure, which depends on the type of element in

question, is provided in the Appendix
void notifyElementCalculated(String[] element) : this method is executed in Thermoptim each time an

element (point, process, node, exchanger) is calculated. Argument element is constructed as follows:
 if(pt instanceof Transfo) element[0]="process";
 else if(pt instanceof PointCorps) element[0]="point";
 else if(pt instanceof Node) element[0]="node";
 else if(pt instanceof HeatEx) element[0]="heatEx";
 element[1]=pt.getName();
 element[2]=pt.getType();

Thus, element can be directly used as an argument in getProperties(): getProperties(element) gives the state of
the element at stake.

Another access point is the Class Corps, which has a number of public methods accessible from the driver,
including:

CalcPropCorps (double T, double p, double x) : calculates the complete state of a substance
getSubstProperties() : properties Vector
a number of methods for inverting the state functions.

Accessing the diagram editor

getEditorComponentList() : provides the list of components present in the diagram editor, in the form
name="componentName"+tab+type="componentType". This list can be extracted easily using
extr_value("name") and extr_value("type").

getConnectionCode(String[] args) : sends a code showing whether two components of the editor are
connected or not: 1 if the component 1 is upstream of component 2, -1 if it is downstream, and 0 if they
are not connected. The structure of the arguments is as follows:

 String[] args=new String[4];
 args[0]="Expansion";//type of component 1
 args[1]="turbine";//name of component 1
 args[2]="Exchange";//type of component 2
 args[3]="régen gaz";//name of component 2

47

Thermoptim reference manual volume 3 November 2014

3 . 5 . 3 O P E R A T I O N I N C L I E N T - S E R V E R M O D E
For various reasons, it may be advantageous to use Thermoptim through a network, for educational purposes, or
to associate a detailed thermodynamic model to a controller (regulation), such a model of heat pump coupled to a
heating regulator.

The solution was to develop a small application based on sti.ThoptEmulator class, instantiated by
sti.ThoptLauncher, which can launch a server managed by sti.ThoptServer class that manages exchanges with
the outside world.

The server is launched by EmulatorServerExec.jar, which uses EmulatorServer.zip which contains the basic
libraries. Both files must be placed in the Thermoptim installation directory.

Data exchange is via BufferedReader and PrintWriter, as multiple line Strings, which are decoded by the client
and server classes. The client is a Java class called Emulator.java, which must of course be adapted according to
the needs.

The proposed solution is to write an external driver, which must implement the Emulable interface, which
defines two methods for sending and receiving requests (String [] getValues() and setParameters (String []
params)). The String [] params of setParameters() and getValues() comprise in the first line the number of lines
and in the following the value records. ThoptServer simply passes from client to server and vice versa both
String [], without modifying them.

It is also possible that the exchange of requests is done using the ModBus protocol, which, although more
complex, has the advantage of being able to communicate with applications not using Java encodings that are
often used in the world of control system.

3 . 6 I N T E G R A T I N G E X T E R N A L C L A S S E S I N T H E
L I B R A R Y E X T U S E R 2 . Z I P

Once the external classes are developed, they must be integrated into the library extUser2.zip so that they can be
automatically recognized in the purely executable version of Thermoptim.

As indicated by its extension, file extUser2.zip is a compressed archive which must be built in a specific format.
You can do it by using either a utility named "external class manager" or a standard compressor such as Winzip,
as indicated in the next sections.

3 . 6 . 1 U S I N G T H E E X T E R N A L C L A S S M A N A G E R

A Thermoptim functionality allows you to perform this operation: the external class manager is available from
the menu Special in the simulator. It requires installing some files containing the libraries it needs4.

Files which must be present are:
- The Extlib.ini file, which contains a single line giving the name of the path to the directory (by default

"externalClassLibrary2") where the library (with a subdirectory extThopt);
- The externalClassLibrary2.zip archive where are temporarily stored by Thermoptim the library classes.

Otherwise, the content extUser2.zip can only be displayed.

Place the new classes not included in the archive in the directory \externalClassLibrary2\extThopt.

If external libraries are loaded by the classes, also copy them to where they should be relative to the directory
\externalClassLibrary2.

Caution: It is recommended to start by making a copy of extUser2.zip to be able to restore it in case of error.
However, as the manager begins by duplicating the file extUser2.zip as extUser2_copy.zip, it is possible in case
of problems start from this file by renaming it.

4 http://www.thermoptim.org/sections/logiciels/thermoptim/ressources/gestionnaire-classes

48

Thermoptim reference manual volume 3 November 2014

Launch the manager from the Special menu of the simulator. If conflicts exist between the code names assigned
to classes, messages are displayed and written to the file output.txt. The screen below is displayed.

In the upper left hand part, it displays all of the classes available in the class library directory whose path is
specified in the file ExtLib.ini (by default the directory "externalClassLibrary2"). These classes are arranged by
type (substances, external processes, external mixtures, external dividers, drivers). On the right hand side, the
content of the extUser2.zip archive is displayed, arranged in the same manner. Thus it is easy to compare the two
sets of classes.

If you select one class in either of the lists, a description appears in the window below. You can also select
multiple classes, in which case nothing is displayed.

You can transfer a single or multiple selection from the class library (left) to the archive extUser2.zip by clicking

on the small central arrow .

If a class selected already exists in the archive, a message warns you, recalling the dates of creation of both
classes, and asks if you want to replace the existing one, or keep it.

You can remove one or more classes from the archive extUser2.zip by clicking on the button "Remove from
extUser2.zip". A message asks you to confirm the deletion for each class selected, with the option to save the
class in the class library. If you want to save a class that exists already in the library, a message is displayed
showing the creation dates of the two classes, and asking you if you want to replace or keep the existing one.

External class manager

49

Thermoptim reference manual volume 3 November 2014

With the two buttons called “export info”, you can create text files called "zipList.txt" or "libraryList.txt" which
contain the name, type and description of each class.

When the left and right windows are loaded, a test is performed to check that the classes are not of the same
type, which could cause errors in Thermoptim. If they are the same type, you must differentiate them and
recompile the modified classes.

Finally, the button “update” updates the two windows once all transfers and removals have been completed, this
operation not being automatically done.

If you have modified the file extUser2.zip, it is strongly recommended that you close and then reopen
Thermoptim because libraries have been modified and Thermoptim may need to be reset.

Attention to related external classes (including superclasses): it is imperative to add or remove them all,
otherwise Thermoptim may not be able to start correctly (the problem would of course be the same using a
standard compactor as shown in the Volume 3 of the Thermoptim reference manual). However, if you use
classes other than those recognized Thermoptim, you should include them in extUser2.zip manually, because this
process cannot be automated.

If Thermoptim does not start after you have changed extUser2.zip, open the file error.txt, which generally
contains information on problems which have occurred.

Lastly, note that the external class viewer analyzes both extThopt2.zip and extUser2.zip files, while the manager
only analyzes extUser2.zip.

You can transfer by hand extThopt2.zip external classes in the library for transferring them in extUser2.zip, then
delete them from extThopt2.zip, but this is not recommended.

3 . 6 . 2 U S I N G A S T A N D A R D C O M P R E S S O R

It is also possible to use a standard compressor such as WinZip by adding the new class in the archive. However,
problems have been reported with certain versions of WinZip.

With WinZip, you can proceed as follows:
- create a new directory and call it “zip”, then

create a sub-directory in that directory called
“extThopt”;

- copy all the classes that you want to load in
extUser.zip or extUser2.zip into this directory
(the classes are located in the class creation
directory of your development environment
(/extThopt/);

- Don’t forget to quit Thermoptim, otherwise
you will not be able to write to the archive
extUser.zip or extUser2.zip;

- Open extUser.zip or extUser2.zip, click on
“Add” and go to the directory “zip”. Select
the option “Recurse folders” then click on
“Add With Wildcards”, which will add the
entire contents of the sub-directory extThopt
(the file path to the classes in the archive
must be correct, otherwise Thermoptim will
not be able to load them).

Loading extUser2.zip with Winzip

50

Thermoptim reference manual volume 3 November 2014

If you encounter difficulties, send an e-mail to contact@s4e2.com explaining your problem, and attach the class
you want to add to extUser2.zip. The new archive will be returned to you as soon as possible.

 3 . 6 . 3 M O D I F Y I N G T H E C L A S S P A T H F O R A D D I N G
J A V A L I B R A R I E S
If you want to add other Java libraries that your classes call, you have to indicate their file path in the classpath.
In Windows, open the Thermoptim configuration file “Thopt.cfg” in a text editor, and add their file paths after “-
cp”, separated by semicolons. Use a similar procedure for Unix and Macintosh.

3 . 6 . 4 V I E W I N G E X T E R N A L C L A S S E S

To help you use and manage the
external classes, the line External Class
Viewer from the Special menu of the
simulator displays all of the external
classes available. They are sorted by
type (substances, processes, mixers,
dividers, drivers) with a short
description of the class selected and
where it comes from (extThopt.zip and
extUser2.zip archives as well as classes
under development).

This screen can be consulted while you
are developing your model. The more
careful you are in writing the
description of your classes, the more
helpful this screen will be to users.
Remember that it is very important to
document your classes thoroughly, and
you can include the documentation
reference in your description. The
documentation is composed of two
parts, one for users and one for class
designers. A poorly documented class
will be difficult to use or modify.

4 E X T E R N A L C L A S S D E V E L O P M E N T E N V I R O N M E N T

Thermoptim configuration file

Viewing the available external classes

51

Thermoptim reference manual volume 3 November 2014

To develop external classes, if you do not already have a Java development environment and if you work in
Windows, you can use a freeware application called JCreator. Developed by Xinox Software, JCreator can be
downloaded from http://www.jcreator.com/.

With JCreator, you can write your classes in Java, and compile and test their integration in Thermoptim. To
make things easier, a start-up workspace is provided. It is called ThoptExterne or ThoptExterneEdu.

4 . 1 P R E S E N T A T I O N O F T H E W O R K S P A C E

The workspace consists of the following:

- in the left part of the screen there is a list of Java files, including a small class called Starter, which launches

the driver, and the classes under development (external files).
- in the right part you have the various tabs containing the code of the classes.
- the bottom window is for messages.

4 . 2 I N S T A L L I N G J C R E A T O R

To install the development environment, you need the following files:

- the Java Development Kit JDK installer, jdk-1_1_8_009-win.exe
- the JCreator installer, jcrea350.zip or a more recent version
- The archive ThoptEdu.jar or Thopt.jar of Thermoptim and your license keys
- the external libraries, JCreatorWorkspaceEdu.ZIP

In the following section, we are assuming that the reader is familiar with the basics of Java. Otherwise, we
suggest reading a beginner’s manual before trying to use the development environment. We recommend the
manual "Introduction to Java" by Borland, which can be downloaded from

JCreator workspace

52

Thermoptim reference manual volume 3 November 2014

http://www.borland.com/techpubs/jbuilder. It is also best to install the documentation of the JDK (jdk118-
doc.zip) as well as the documentation for Swing classes (SWING103.ZIP), which we consult regularly when
developing in Java.

Before installing JCreator, you have to install the Java development environment distributed by Sun, called the
Java Development Kit, or JDK, which it uses to perform the compilations and execute the code that you develop.
Java has evolved considerably in recent years, and it exists in several versions. There are three versions with
major differences: version 1.0, which is hardly used anymore, version 1.1, supported by almost all systems and
web browsers, and versions 1.2 to 1.5, also called Java 2, the most recent and most powerful, but also the most
resource-consuming. For each of these versions, there are variants, indicated by a third digit (the latest version
1.1 is referenced 1.1.8). Because versions 1.0 and 1.1 are relatively rudimentary in terms of interfaces, Sun has
developed a series of libraries called Swing or JFC (Java Foundation Classes), which are totally integrated into
version 2, and of which several versions exist as well.

To save system resources, Thermoptim uses JDK version 1.1.8, as well as the Swing classes 1.0.3.
Consequently, you must install this version of the JDK. As indicated above, you should also install the JDK
documentation. This will enable you to consult the API of the Java classes from JCreator.

Start by installing the JDK and its documentation, then JCreator. When you run JCreator for the first time, the
software gives you the option of linking the extensions of certain files. Click OK unless you have a good reason
not to. Then choose the file paths to the directories containing the JDK and its documentation.

Decompress the file JCreatorWorkspaceEdu.ZIP and place the folder ThoptExterneEdu in the folder named
“myProjects” of the JCreator installation directory. This is a workspace containing all the files you need to work
with Thermoptim. Add the archive ThoptEdu.jar or Thopt.jar of Thermoptim and inth.zip (version 1.5 or higher),
as well as your license files (all of these files are located in the Thermoptim installation directory). Launch
JCreator, select “File/Open Workspace” and choose "ThoptExterne.jcw".

The application cannot run correctly because it is not fully configured. Open the menu Projects/Project settings.
You will see a screen like the one below on the left. Verify which JDKs appear and which one is checked. If
only JDK 1.1.8 is installed on your machine, go on to the next step. Otherwise, if JDK 1.1.8 appears but another
JDK is checked, check JDK 1.1.8. If it is not listed, click “New” then select the installation directory of JDK
1.1.8 and click “OK”, then make sure it is checked.

Next you have to indicate the libraries required by your application, in this case all of the libraries Thermoptim
needs to work, plus Thermoptim itself. Click on the tab “Required Libraries” then on “New” then “Add” and
select from the “ThoptExterne” directory the files that appear on the screen below on the right: ThoptEdu.jar or
Thopt2.jar, extUser2.zip, im2.zip, inth2.zip, extThopt2.zip, gef.jar. Once the archives are selected, click “OK”.
You can now start developing your external classes as indicated in section 3.

Configuration of JDK

Configuration of libraries

53

Thermoptim reference manual volume 3 November 2014

The API (Application Programming Interface) for the Thermoptim methods accessible from external classes is
defined in the JavaDoc located in the folder "api_Thermoptim" of the development environment.

The source code of the base classes of the package extThopt is given in the form of a JCreator Workspace called
ClassesExternes. These classes are already contained in the archive extThopt.zip and should not be loaded in the
development environment. You can modify them, but they may no longer be compatible with the “official”
versions of the Thermoptim external classes.

Appendix 1 describes how they are used and gives a number of examples. Appendix 2 gives the code for the
Thermoptim methods that return Vectors whose details it is useful to know for programming external classes.
Appendix 3 contains a brief description of the methods in the Util class.

4 . 3 E M U L A T I N G T H E R M O P T I M F R O M J C R E A T O R

To be able to emulate Thermoptim in order to test a class under development, we created a special workspace in
JCreator, in which three classes that we present here play a key role:

- Starter is the class launched when JCreator starts up. It initializes the output files ("output.txt" and

"error.txt") and instantiates the Pilot class of the pilot package;
- Pilot is the class that launches Thermoptim, instantiating the class ProjetThopt of the same package and

running the method runThopt(). Next, the method loadProject() displayed on the screen of the figure
presenting the workspace loads a project and a diagram for testing the external classes under development.
In the JCreator workspace figure, we have entered different examples, since only the last one loaded in the
array args[] is taken into account (this enables us to change examples easily, by moving the two lines
involved);

- ProjetThopt, which inherits from the class Projet of Thermoptim, has a method called getInternalClasses() in
which the external classes to be loaded in Thermoptim
are defined.

Once the methods loadProject() and getInternalClasses()
have been modified, simply recompile the project and run it
so that the load window of Thermoptim and its project
appear.

By clicking on “Run Thermoptim and load example”, you
load the example you want. You can use all the features of
the software, including the ability to modify and save your
example. If a project or diagram file is missing, a message
will alert you.

In this way, you can develop your class and directly test it
in Thermoptim, which will save a lot of time. Once the
class is developed simply archive it in extUser2.zip so that
it can be distributed and used outside the development
environment.

Practically speaking, the procedure is as follows:

- Following the instructions given in chapter 3, start by creating your external class, either by modifying one

of the ones provided (the java files are in the directory “src” of the Workspace) or from the JCreator
assistant (menu Project/New Class), and compile it (menu Build/Compile file)

- Declare your class in the method getInternalClasses() of the class ProjetThopt, following the instructions
provided, so that it is loaded in Thermoptim when the software is loaded, and recompile ProjetThopt

- To test your class, duplicate a project and diagram example, enter the new names on the last lines of the
array args[] in the method loadProject() of Pilot, and recompile Pilot.

- Launch execute (menu Build/Execute Project, or F5) and click on “Run Thermoptim and load example”

The screen of the Pilot class has another button allowing you to instantiate another class if you want to. Simply
write the corresponding code in the method bOtherClass_actionPerformed().

Driver class screen

54

Thermoptim reference manual volume 3 November 2014

A P P E N D I X 1 : T H E R M O P T I M M E T H O D S W H I C H C A N
B E C A L L E D B Y E X T E R N A L C L A S S E S

In this appendix, we present Thermoptim methods which can be called by external classes, indicating what is
their purpose and giving a number of implementation examples. Their API is itself defined in the JavaDoc that is
in the directory api_Thermoptim of the development environment

package rg.corps

Two class names are not obfuscated: rg.corps.Corps, mother class of all substances and rg.corps.CorpsExt,
mother class of all external substances.

The following methods can be called by external classes:

In Corps

To calculate a substance state
public void CalcPropCorps (double T, double p, double x)

To instantiate a substance whose name is known
public static Object createSubstance(String nomCorps)

example :

Object obj=Corps.createSubstance("eau");//instantiation of the substance, wrapped in an Object
Corps leau=(Corps)obj;//transtyping of the Object
double T=leau.getT_from_hP(3400,50);// Reverse calculation inT of the enthalpy the pressure being known
System.out.println("T eau : "+T);

To get the Cp of a substance knowing its Cv
public double getCp(double Cv)

Reverse calculation of state functions
public double getP_from_hT(double hv,double T)
public double getP_from_sT(double sv,double T)
public double getP_from_sT(double sv,double T, double pmin, double pmax)
public double getP_from_vT(double v,double T)
public double getT_from_hP(double hv,double P)
public double getT_from_sP(double sv,double P)
public double getT_from_sv(double s,double v)
public double getT_from_uv(double u,double v)

public double[] getQuality(), used with all previous methods, gives the the vapor-liquid equilibrium composition.
In particular, for pure substances, getQuality() [0] is the steam quality.

Methods for calculating the saturation pressure or temperature
public double getSatPressure(double T, double x)
public double getSatTemperature(double P, double x)

To get a substance state
public Vector getSubstProperties()

method getSubstProperties() of extProcess indirectly uses this method to load the values of the double
Tsubst,Psubst,Xsubst,Vsubst,Usubst,Hsubst,Ssubst,Msubst,typeSubst;

example :

lecorps.CalcPropCorps(Tpoint+1, Ppoint, Xpoint);//calculates the substance state

55

Thermoptim reference manual volume 3 November 2014

getSubstProperties(nomCorps);// retrieves the calculated values and loads them in particular in Hsubst
double Cp=(Hsubst-H);
typeSubst is 1 for water, 2for steam, 3 for a pure gas, 4 for a compound gas, 5 for a single external substance,
and 6 for an external substance of the Mixture type.

Initialization of an external substance
public void initCorpsExt(double M, double PC, double TC, double VC,
 double Tmini, double Tmaxi, double Pmini, double Pmaxi, int typeCorps)

Defines a comment for an external substance (chemical formula, composition ...)
public void setComment(String comment)

Gives a name to an external substance
public void setNom(String name)

Loads values of calculations made by the external substance
public void setState(double P, double T, double xx,
 double U, double H, double S, double V, double Cv,
 double Xh)

To get a gas composition
public Vector getGasComposition()

example :

getPointProperties(cO2Point);// retrieves the properties of point cO2Point
Vector nouvComp=lecorps.getGasComposition();//retrieves the gas composition
updateGasComp(nouvComp, cO2Process);//updates the gas composition

To update a gas composition
public void updateGasComp(Vector vComp)

The Vector structure is as follows:

public void updateGasComp(Vector vComp){
 Integer i=(Integer)vComp.elementAt(0);
 int nComp=i.intValue();
 String[] Comp= new String[nComp];
 double[]fractmol= new double[nComp],fractmass= new double[nComp];
 Double[]fracMol= new Double[nComp],fracMass= new Double[nComp];
 Comp=(String[])vComp.elementAt(1);
 fracMol=(Double[])vComp.elementAt(2);
 fracMass=(Double[])vComp.elementAt(3);
 for(int j=0;j<nComp;j++){
 Double f=(Double)fracMol[j];
 fractmol[j]=f.doubleValue();
 f=(Double)fracMass[j];
 fractmass[j]=f.doubleValue();
 }
updateSubstComp(Comp,fractmol,fractmass);
}

In CorpsExt

public double getLiquidConductivity(double T)
public double getLiquidViscosity(double T)
public double getVaporConductivity(double T)
public double getVaporViscosity(double T)

56

Thermoptim reference manual volume 3 November 2014

package rg.thopt

The following class names are not obfuscated:

- rg.thopt.Projet, simulator class,
- rg.thopt.TransfoExterne, rg.thopt.DividerExterne, rg.thopt.MixerExterne et rg.thopt.ComposantExt, used to
define the external components
- rg.thopt.Compression and rg.thopt.ComprExt, used to define the external compressors.

The following methods can be called

In Projet

Launches Thermoptim recalculation from the driver
public void calcThopt()

returns a code that allows the driver to know if two components of the editor are connected or not:
public int getConnectionCode(String[] args)

1 if component 1 is the upstream component 2, -1 otherwise, and 0 if not connected.

The argument structure is the following :
 String[] args=new String[4];
 args[0]="Expansion";//type of component 1
 args[1]="turbine";//name of component 1
 args[2]="Exchange";//type of component 2
 args[3]="régen gaz";// name of component 2

Lists the components in the diagram editor
public String[] getEditorComponentList()

edited as name="nomComposant"+tab+type="typeComposant". This list can be broken easily with
extr_value("name") and extr_value("type")

Lists of elements
public String[] getHxList ()
public String[] getNodeList ()
public String[] getPointList ()
public String[] getProcessList()
public String[] getSubstanceList ()

Vector of properties whose structure depends on the type of element considered
public Vector getProperties(String[] args)

type=args[0]; "subst" / "point" / "process" / "heatEx"
nomType=args[1];

This method is fundamental: it allows access to all data related to a primitive type once one the type and name
known. It is widely used by generic methods of extThopt package.

The corresponding Thermoptim internal code is given in annex 2. It lets you know the structure of the Vector
returned (depending on the type of primitive called).

Loading of examples by the Thermoptim driver
public void loadSelection(String[] args)

method executed in Thermoptim each time an item (point, process, node, exchanger) is calculated
public void notifyElementCalculated(String[] element)

57

Thermoptim reference manual volume 3 November 2014

element is constructed as follows:
 if(pt instanceof Transfo) element[0]="process";
 else if(pt instanceof PointCorps) element[0]="point";
 else if(pt instanceof Node) element[0]="node";
 else if(pt instanceof HeatEx) element[0]="heatEx";
 element[1]=pt.getName();
 element[2]=pt.getType();

Thus, it can directly be used as an argument in getProperties(): getProperties(element) provides the state of the
element.

allows the driver to take control between two recalculations, to modify certain Thermoptim parameters
public void setControls()

instantiates the diagram editor and used to disable certain functions by the Thermoptim driver
public void setupThopt()

instantiates the diagram editor
public void openEditor()

loading external classes in the Thermoptim driver
public Vector getInternalClasses()

Operations on the charts from the Thermoptim driver
public void setupChart (Vector v)

example of opening chart, choice of substance and drawing of two cycles

if(proj!=null)proj.calcThopt();//if necessarye instantiation of Thermoptim
Vector v=new Vector();
v.addElement("openDiag");//opening of a chart
v.addElement("1");// chart type (1 for vapors, 2 for ideal gas, 3 for psychrometric)
proj.setupChart(v);
v=new Vector();
v.addElement("selectSubstance");//selection of a substance
v.addElement("R134a");//name of the substance
proj.setupChart(v);

v=new Vector();
v.addElement("readCycle");//loading a cycle
v.addElement("frigoR134aFin.txt");//file name
proj.setupChart(v);
v=new Vector();
v.addElement("readCycle");// loading a cycle
v.addElement("frigoR134a.txt");// file name
proj.setupChart(v);

updates a point or a process
public void updatePoint(Vector v)

example : method updateStraightlyConnectedProcess() of ExtNode includes:

Vector vPoint=new Vector();
vPoint.addElement(outletPointName);
vPoint.addElement(Util.aff_b(updateT));
vPoint.addElement(Util.aff_d(T));
vPoint.addElement(Util.aff_b(updateP));
vPoint.addElement(Util.aff_d(P));
vPoint.addElement(Util.aff_b(updateX));

58

Thermoptim reference manual volume 3 November 2014

vPoint.addElement(Util.aff_d(x));
proj.updatePoint(vPoint);

In PilotFrame

To get a handle on the Projet calling
public void getProjet ()

In ComposantExt

To calculate the component
public void calcProcess()

To get the component’s name
public String getCompName()

To get the component’s type
public String getCompType()

To read the component settings saved in the project file
public void readCompParameters(String ligne_data)

To save the component settings in the project file
public String saveCompParameters()

To initialize the component screen and its internal logical configuration
public void setCompFrame(Object obj)
public void setDivFrame (Object obj)
public void setMixFrame (Object obj)

to update the process (flow, inlet point, outlet point, energy types)
public void setupFlow(double flow)
public void setupPointAmont(Vector vProp)
public void setupPointAval (Vector vProp)
public void updateProcess(Vector vEner)

To construct the Vector vProp, ExtProcess has a generic method, which wraps the point state:

public Vector getProperties(){
 Vector vProp=new Vector();
 vProp.addElement(lecorps);//Corps
 vProp.addElement(nomCorps);//Corps
 vProp.addElement(new Double(Tpoint));
 vProp.addElement(new Double(Ppoint));
 vProp.addElement(new Double(Xpoint));
 vProp.addElement(new Double(Vpoint));
 vProp.addElement(new Double(Upoint));
 vProp.addElement(new Double(Hpoint));
 return vProp;
}

example :

tfe.setupPointAval(getProperties());

method updateProcess() of ComposantExt can assign values to different types of energy. It is easily implemented
with the method setEnergyTypes() ExtThopt (see Section 3.2.3).

example :

59

Thermoptim reference manual volume 3 November 2014

tfe.updateProcess(setEnergyTypes(useful,purchased,other));

In TransfoExterne

To update a thermocoupler
public void updateThermoCouplers(Vector vTC)

To construct the Vector vTC, ExtProcess has a generic method, which wraps the values:

protected void updateThermoCoupler(String type, double Tin, double Tout, double Q, double flow){
 Vector vTC=new Vector();
 vTC.addElement(type);//type du thermocoupleur considéré
 Double d=new Double(Tin);
 vTC.addElement(d);
 d=new Double(Tout);
 vTC.addElement(d);
 d=new Double(Q);
 vTC.addElement(d);
 d=new Double(flow);
 vTC.addElement(d);
 tfe.te.updateThermoCouplers(vTC);
}

Provides the values of the thermocoupler of the type called
public Vector getThermoCouplerData(String thermoCouplerType)

The Vector returned contains only for the moment the thermocoupler name, but this should evolve.

In DividerExterne

Updates the divider
public void updateDivider (Vector vTC)

To construct the Vector vTC, ExtProcess has a generic method, which wraps the values:

protected Vector getUpdateVector (Vector[]vTransfo,Vector[]vPoints, double TGlobal, double hGlobal){
 Vector vTC=new Vector();
 for(int j=0;j<vTransfo.length;j++){
 vTC.addElement(vTransfo[j]);
 }
 for(int j=0;j<vPoints.length;j++){
 vTC.addElement(vPoints[j]);
 }
 Vector vGlobal=new Vector();
 vGlobal.addElement(new Double(TGlobal));
 vGlobal.addElement(new Double(hGlobal));
 vTC.addElement(vGlobal);
 de.de.updateDivider(vTC);
}

In ExtDivider the call is made as follows :

protected void updateDivider(Vector[]vTransfo,Vector[]vPoints, double TGlobal, double hGlobal){
 Vector vTC=getUpdateVector(vTransfo,vPoints, TGlobal, hGlobal);
 de.de.updateDivider(vTC);
}

60

Thermoptim reference manual volume 3 November 2014

These methods make use of tables of Vector vTransfo and vPoint representing the main vein and branches,
which may be useful to automate the construction, as in the Desorber class, where generic methods called by a
name with a physical sense are used to build the Vector:

private void setupRichSolution(double m, double T, double P, double X){
 vTransfo[0]=new Vector();
 vPoints[0]=new Vector();
 vTransfo[0].addElement(richSolutionProcess);
 vTransfo[0].addElement(new Double(m));

 vPoints[0].addElement(richSolutionPoint);
 vPoints[0].addElement(new Double(T));
 vPoints[0].addElement(new Double(P));
 vPoints[0].addElement(new Double(X));
}

example : update of external divider Desorber after calculation :

vTransfo= new Vector[nBranches+1];
vPoints= new Vector[nBranches+1];
setupRichSolution(msr,Tsr,Psr,Xsr);
setupPoorSolution(msp,Tgen,P,Xsp);
setupRefrigerant(mr,Trefr,Prefr,1);
updateDivider(vTransfo,vPoints,Tsr,Hsr);

Gives the divider values
public Vector getDividerData()

Currently not used, because duplicating getProperties() Project executed for a node. ExtDivider it provides
method public void getDividerStructure() which loads the structure of the node.

To update a thermocoupler (see TransfoExterne)
public void updateThermoCouplers(Vector vTC)

Provides the values of the thermocoupler of the type called (see TransfoExterne)
public Vector getThermoCouplerData(String thermoCouplerType)

In MixerExterne

Updates the mixer (see DividerExterne)
public void updateMixer (Vector vTC)

Gives the mixer values (see DividerExterne)
public Vector getMixerData ()

Pour mettre à jour un thermocoupleur (voir TransfoExterne)
public void updateThermoCouplers(Vector vTC)

Provides the values of the thermocoupler of the type called (see TransfoExterne)
public Vector getThermoCouplerData(String thermoCouplerType)

In ComprExt

public double getComprFlow()
public double getComprIsentropicEfficiency()
public String getComprName()

61

Thermoptim reference manual volume 3 November 2014

public double getComprRatio()
public double getComprRelaxValue()
public double getComprRotationSpeed()
public double getComprSweptVolume()
public String getComprType()
public double getComprVolumetricEfficiency()
public double getComprVolumetricFlow()
public double getPumpFanVolumetricFlow()
public Vector getSupplyPointProperties()
public void makeComprDesign()
public void readComprParameters(String line)
public String saveComprParameters()
public void setComprFrame(Object ob)

62

Thermoptim reference manual volume 3 November 2014

A N N E X 2 : T H E R M O P T I M M E T H O D S C O D E

We give here the code of certain Project and Corps methods whose structure must be faithfully reproduced if
they are to be used in subclasses.

Method getProperties() of Projet
 /**
 * Fournit les valeurs thermodynamiques des divers types primitifs
 *<p>
 * Gives thermodynamic values for the various element
 * @param args String[]
 * @param type=args[0]; "project" / "subst" / "point" / "process" / "heatEx"
 * @param nomType=args[1];
 **/
 public Vector getProperties(String[] args){
 String type, nomType;
 type=args[0];
 nomType=args[1];
 Vector vProp=new Vector();

 if(type.equals("project")){
 vProp.addElement(Util.unit_m);//unité des débits //flow rate unit
 vProp.addElement(Util.unitT);//unité des températures //temperature unit
 vProp.addElement(new Double(Util.T0Exer));
 }
 else if(type.equals("subst")){
 Corps pt=getCorps(nomType);
 if(pt!=null){
 vProp=pt.getSubstProperties();
 }
 }
 else if(type.equals("point")){
 PointCorps pt=getPoint(nomType);
 if(pt!=null){
 vProp.addElement(pt.lecorps);//Substance
 vProp.addElement(pt.lecorps.getNom());//Substance name
 vProp.addElement(new Double(pt.getT()));//Temperature
 vProp.addElement(new Double(pt.getP()));//Pressure
 vProp.addElement(new Double(pt.getXx()));//Quality
 vProp.addElement(new Double(pt.getV()));//Volume
 vProp.addElement(new Double(pt.getU()));//Internal energy
 vProp.addElement(new Double(pt.getH()));//Enthalpy
 vProp.addElement(new Double(pt.getS()));//Entropy
 String setTsat="set_Tsat="+Util.aff_b(pt.JCheckSetTsat.isSelected());
 vProp.addElement(setTsat);//setTsat
 vProp.addElement(new Double(pt.dTsat_value.getValue()));//DTsat
 String setpsat="set_psat="+Util.aff_b(pt.JCheckSetPsat.isSelected());
 vProp.addElement(setpsat);//setpsat

 //wet gas values
 vProp.addElement(new Double(pt.w_value.getValue()));//specific humidity
 vProp.addElement(new Double(pt.epsi_value.getValue()));//relative humidity
 vProp.addElement(new Double(pt.qprime_value.getValue()));//specific enthalpy
 vProp.addElement(new Double(pt.tprime_value.getValue()));//adiabatic temperature
 vProp.addElement(new Double(pt.tr_value.getValue()));//dew point temperature
 vProp.addElement(new Double(pt.v_spec_value.getValue()));//specific volume
 vProp.addElement(new Double(pt.cond_value.getValue()));//condensates
 vProp.addElement(new Double(pt.lecorps.M_sec));//Dry gas molar mass

63

Thermoptim reference manual volume 3 November 2014

 }
 }
 else if(type.equals("process")){
 Transfo tf=getTransfo(nomType);
 vProp.addElement(tf.getType());
 if(tf!=null){
 vProp.addElement(tf.getPointAmont().getName());
 vProp.addElement(tf.getPointAval().getName());
 vProp.addElement(new Double(tf.getFlow()));//flow rate
 vProp.addElement(new Double(tf.DeltaH));//Enthalpy
 vProp.addElement(tf.ener_type_value.getText());//Energy type
 String direct="calcDirect="+Util.aff_b(tf.IcalcDirect);
 vProp.addElement(direct);//true if direct calculation
 String ouvert="openSyst="+Util.aff_b(tf.JCheckOuvert.isSelected());
 vProp.addElement(ouvert);//true for open system
 String setflow="setFlow="+Util.aff_b(tf.JCheckSetFlow.isSelected());
 vProp.addElement(setflow);//true for set flow
 String inletProcess="null";
 if(tf.isInletStrConnected())inletProcess=tf.getTransfoAmontName();//inlet process name (if
exits)
 vProp.addElement(inletProcess);
 String outletProcess="null";
 if(tf.isOutletStrConnected())outletProcess=tf.getTransfoAvalName();//outlet process name (if
exits)
 vProp.addElement(outletProcess);
 if(tf instanceof Combustion){
 Combustion cb=(Combustion)tf;
 String fuel="null";
 if(cb.getFuel()!=null)fuel=cb.getFuel().getName();
 vProp.addElement(fuel);
 vProp.addElement(new Double(cb.lambda_value.getValue()));//lambda
 vProp.addElement(new Double(cb.Tfluegas));//combustion temperature
 vProp.addElement(new Double(cb.tfig_value.getValue()));//quenching temperature
 vProp.addElement(new Double(cb.t_diss_value.getValue()));//dissociation rate
 String calcLambda="calcLambda="+Util.aff_b(cb.JCheckCalcLambda.isSelected());
 vProp.addElement(calcLambda);//true if calculate lambda set
 String calcT="calcT="+Util.aff_b(cb.JCheckCalcT.isSelected());
 vProp.addElement(calcT);//true if calculate T set
 String setFuelFlow="setFuelFlow="+Util.aff_b(cb.JCheckFuelFlow.isSelected());
 vProp.addElement(setFuelFlow);//true if calculate with set fuel flow
 String dissoc="setDissoc="+Util.aff_b(cb.Check_dissoc.isSelected());
 vProp.addElement(dissoc);//true if dissociation set
 String premix="setPremix="+Util.aff_b(cb.JCheckPremix.isSelected());
 vProp.addElement(premix);//true if premix set
 String setV="setV="+Util.aff_b(cb.JChecksetV.isSelected());
 vProp.addElement(setV);//true if set volume
 String setP="setP="+Util.aff_b(cb.JChecksetP.isSelected());
 vProp.addElement(setP);//true if set pressure
 String setT="setT="+Util.aff_b(cb.JChecksetT.isSelected());
 vProp.addElement(setT);//true if set temperature
 }
 }
 }
 else if(type.equals("node")){
 Node the_node=getNode(nomType);
 if(the_node!=null){
 vProp.addElement(the_node.mainProcess.getName());//main process name
 vProp.addElement(the_node.getClassType());//node type

64

Thermoptim reference manual volume 3 November 2014

 vProp.addElement(the_node.getEffNode());//node effectiveness
 vProp.addElement(Util.aff_b(the_node.isoBaric));//is node isobaric?
 vProp.addElement(new Integer(the_node.vBranch.size()));//number of branches
 for(int j=0;j<the_node.vBranch.size();j++){
 Object[] branch=(Object[])the_node.vBranch.elementAt(j);
 Transfo the_process=(Transfo)branch[0];
 vProp.addElement(the_process.getName());//branch process name
 }
 }
 }
 else if(type.equals("heatEx")){
 HeatExDemo hX=getHX(nomType);

 if(hX!=null){
 String coldFluid="",hotFluid="";
 if(hX instanceof ThermoCoupler){
 ThermoCoupler tc=(ThermoCoupler)hX;
 coldFluid=tc.getHcName();
 hotFluid=tc.getExchange().getName();
 }
 else {
 coldFluid=hX.getColdFluid().getName();
 hotFluid=hX.getHotFluid().getName();
 }
 vProp.addElement(hotFluid);//hot fluid process name
 vProp.addElement(coldFluid);//cold fluid process name
 vProp.addElement(hX.getHxType());//heat exchanger type (counterflow, parallel flow...)
 vProp.addElement(Util.aff_b(hX.JCheckTceImp.isSelected()));//set Tce
 vProp.addElement(Util.aff_b(hX.JCheckTcsImp.isSelected()));//set Tcs
 vProp.addElement(Util.aff_b(hX.JCheckMcImp.isSelected()));//set mc
 vProp.addElement(Util.aff_b(hX.JCheckTfeImp.isSelected()));//set Tfe
 vProp.addElement(Util.aff_b(hX.JCheckTfsImp.isSelected()));//set Tfs
 vProp.addElement(Util.aff_b(hX.JCheckMfImp.isSelected()));//set mf
 vProp.addElement(Util.aff_b(hX.JCheckMinPinch.isSelected()));//set minimum pinch
 vProp.addElement(Util.aff_b(hX.JCheckSetEff.isSelected()));//set effectiveness
 vProp.addElement(Util.aff_b(hX.IcalcDirect));//set direct calculation (not used I think)
 vProp.addElement(Util.aff_b(hX.JCheckDesign.isSelected()));//set design mode
 vProp.addElement(new Double(hX.R));//R value
 vProp.addElement(new Double(hX.NUT));//NUT value
 vProp.addElement(new Double(hX.UA));//UA value
 vProp.addElement(new Double(hX.DTML));//DTML value
 vProp.addElement(new Double(hX.epsi_value.getValue()));//effectiveness value
 vProp.addElement(new Double(hX.DTmin_value.getValue()));//pinch value
 }
 }
 return vProp;
 }

Method updatePoint () of Projet

 /**
 * met à jour un point, avec recalcul éventuel
 * valable pour calculs humides
 *<p>
 * updates a point, possibly with recalculation
 * valid for moist gas calculations
 */
 public void updatePoint(Vector properties){
 String nomPoint=(String)properties.elementAt(0);
 PointCorps point=getPoint(nomPoint);

65

Thermoptim reference manual volume 3 November 2014

 if(point!=null){
 String test=(String)properties.elementAt(1);
 boolean updateT=Util.lit_b(test);
 String value=(String)properties.elementAt(2);
 double T=Util.lit_d(value);
 test=(String)properties.elementAt(3);
 boolean updateP=Util.lit_b(test);
 value=(String)properties.elementAt(4);
 double P=Util.lit_d(value);
 test=(String)properties.elementAt(5);
 boolean updateX=Util.lit_b(test);
 value=(String)properties.elementAt(6);
 double x=Util.lit_d(value);

 //pour mélanges humides
 if(properties.size()>7){
 test=(String)properties.elementAt(7);
 boolean melHum=Util.lit_b(test);

 if(!melHum){//calculs à effectuer dans le cas général //general case
 if(updateT)point.setT(T);
 if(updateP)point.setP(P);
 if(updateX)point.setX(x);
 point.CalculeUnPoint();
 }
 else{//calculs humides //wet point calculations

 String task=(String)properties.elementAt(8);
 value=(String)properties.elementAt(9);

 if(task.equals("setW and calculate all")){//sets w and calculates moist properties
 double w=Util.lit_d(value);
 point.setW(w);
 point.calcHum();
 }
 if(task.equals("setW and calculate q'")){//sets w and calculates moist properties except t'
 double w=Util.lit_d(value);
 point.setW(w);
 point.calcQprime();
 }
 if(task.equals("setEpsi")){//sets epsilon
 double epsi=Util.lit_d(value);
 point.setEpsi(epsi);
 point.impHumRel();
 }
 if(task.equals("setEpsi and calculate")){//sets epsilon and calculates moist properties
 double epsi=Util.lit_d(value);
 point.setEpsi(epsi);
 point.impHumRel();
 point.calcQprime();
 }
 if(task.equals("calcWsat")){//calculates saturation properties and moist properties except t'
 T=Util.lit_d(value);
 double wsat=point.wsat(T);
 point.setW(wsat);
 point.calcQprime();
 }
 if(task.equals("modHum")){//modifies the gas composition
 point.modGasHum(false);
 }

66

Thermoptim reference manual volume 3 November 2014

 }
 }
 else{//calculs à effectuer dans le cas général
 if(updateT)point.setT(T);
 if(updateP)point.setP(P);
 if(updateX)point.setX(x);
 point.CalculeUnPoint();
 }
 }
 }

Method getSubstProperties() of Corps
/**
 * donne les fonctions d'état du substance
 * <p>
 * gives the substance state functions
 * @return Vector
 *<p>
 * do not override
 */
 public Vector getSubstProperties(){
 Vector vProp=new Vector();
 vProp.addElement(new Double(T));//Temperature
 vProp.addElement(new Double(P));//Pressure
 vProp.addElement(new Double(xx));//Quality
 vProp.addElement(new Double(V));//Volume
 vProp.addElement(new Double(U));//Internal energy
 vProp.addElement(new Double(H));//Enthalpy
 vProp.addElement(new Double(S));//Entropy
 vProp.addElement(new Double(M));//Molar mass
 vProp.addElement(new Integer(typeCorps));//Substance type
 vProp.addElement(new Double(M_sec));//Dry gas molar mass [9]
 vProp.addElement(new Double(TC));//Critical temperature [10]
 vProp.addElement(new Double(PC));//Critical pressure [11]
 vProp.addElement(new Double(VC));//Critical volume [12]
 vProp.addElement(new Double(getChemicalExergy()));//Chemical exergy [13]
 return vProp;
 }

Method getExternalClassInstances () of Projet
/**
 * Provides the external class instances
 *
 * @return a Vector containing the instances and their type
 */
public Vector getExternalClassInstances(){
 Vector vInstances=new Vector();
 Primtype pt;
 int nbProcess=vProcess.size();
 for(int i=0;i<nbProcess;i++){
 pt=(Primtype)vProcess.elementAt(i);
 if(pt instanceof TransfoExterne){
 Object[] obj=new Object[6];
 TransfoExterne te=(TransfoExterne)pt;
 obj[0]="process";
 obj[1]=te.cType.externalInstance;//instance de la classe externe
 obj[2]=te.getName();
 obj[3]=te.cType.externalInstance.getType();//type de la classe externe

67

Thermoptim reference manual volume 3 November 2014

 obj[4]=te.getPointAmont().getName();
 obj[5]=te.getPointAval().getName();
 vInstances.addElement(obj);
 }
 }
 int nbNode=vNode.size();
 for(int i=0;i<nbNode;i++){
 pt=(Primtype)vNode.elementAt(i);
 if((pt instanceof MixerExterne)||(pt instanceof DividerExterne)){
 Node nd=(Node)pt;
 Object[] obj=new Object[6];
 obj[0]="node";
 obj[1]=nd.cType.externalInstance;//instance de la classe externe
 obj[2]=nd.getName();
 obj[3]=nd.cType.externalInstance.getType();//type de la classe externe
 obj[4]=nd.getMainProcess().getName();
 obj[5]=new Integer(nd.getBranches().size());
 vInstances.addElement(obj);
 }
 }
 return vInstances;
 }

Method setupChart () of Projet

public void setupChart(Vector properties){
 String task=(String)properties.elementAt(0);
 String value=(String)properties.elementAt(1);

 if(task.equals("openDiag")){
 int i=Util.lit_i(value);
 setupChart(false);
 cm.setupChart(i);
 }
 else if(task.equals("selectSubstance")&& cm!=null){
 Graph graph=cm.getChart();
 graph.getDiagIni().setSelectedSubstance(value);
 graph.select_vap();
 }
 else if(task.equals("readCycle")&& cm!=null){
 Graph graph=cm.getChart();
 graph.litCycle(value,"");
 graph.setConnectedCycle();
 }
 else if(task.equals("unSelectCycle")&& cm!=null){
 Graph graph=cm.getChart();
 graph.setupCycleManager();
 CycleManager cM=graph.getCycleManager();
 cM.unSelect(value);
 graph.repaint();
 }
 else if(task.equals("removeCycle")&& cm!=null){
 Graph graph=cm.getChart();
 graph.setupCycleManager();
 CycleManager cM=graph.getCycleManager();
 cM.removeCycle(value);
 graph.repaint();
 }
 else if(task.equals("setChartType")&& cm!=null){

68

Thermoptim reference manual volume 3 November 2014

 Graph graph=cm.getChart();
 graph.setChartType(value);
 }

 }

A N N E X 3 : U T I L I T Y M E T H O D S O F C L A S S U T I L

Class ExtThopt.Util provides a number of utility methods to facilitate the programming of external classes:

Display methods

• public static String aff_i(int i) : affiche un entier
• public static String aff_b(boolean b) : affiche un booléen
• public static String aff_d(double d) : affiche un double
• public static String aff_d(double d, int dec) : affiche un double avec dec décimales

Conversion methods

• public static int lit_i(String s) : lit un entier
• public static boolean lit_b(String s) : lit un booléen
• public static double lit_d(String s) : lit un double

Methods extracting values from a String

• public static String extr_value(String s)
• public static String extr_value(String ligne_data, String search)

The first method extracts "3.4" from "value = 3.4", whatever the text to the left of the equal sign. It can be used
with a StringTokeniser separating couples "value = xxx".

The second combines with StringTokeniser separator tab and the previous method, searching for the couple
"search = xxx".

Both methods return null in case of failure.

Function inversion methods

• public static double dicho_T (Inversable inv, double value,double param, String function, double valMin,

double valMax,double epsilon)

This generic method allows the inversion of a function by dichotomy. The class must implement the Inversable
interface, which requires to define method f_dicho:

public double f_dicho(double x, double param, String function)

value is the objective value for the method returned by f_dicho, the variable x varies between valMin and
valMax, epsilon is the accuracy criterion, and function is a String allowing to identify a particular method in
f_dicho:

if (function.equals("P_LiBr"))return getP(x,T);

After 50 iterations, dicho_T returns 0 if no convergence.

Methods for handling a pure gas in a gas composition Vector

69

Thermoptim reference manual volume 3 November 2014

• public static double molarComp(Vector vComp,String pureGas) : gives the molar fraction of pureGas
• public static boolean contains(Vector vComp,String pureGas) : gives true if pureGas exists
• public static void updateMolarComp(Vector vComp,String pureGas, double newFractMol) : updates the

molar fraction of pureGas

70

Thermoptim reference manual volume 3 November 2014

A N N E X E 4 : T E P T H E R M O S O F T - I N T E R F A C E J A V A /
D E L P H I – A P P L I C A T I O N À T H E R M O P T I M

(P A R F . R I V O L L E T)

Ce document explique le principe de passerelle entre TEP ThermoSoft et Thermoptim. Ces deux programmes
sont écrits respectivement en Pascal sous environnement Delphi et en Java. L’objectif est le calcul des
propriétés thermodynamiques nécessaires sous Thermoptim à partir des modèles développés pour TEP
ThermoSoft.

Structure de dialogue entre les deux programmes

Le schéma ci-dessous reprend le principe de dialogue entre les deux programmes et les fichiers nécessaire à un
calcul.

Fig. 1 : Relations entre les fichiers

La principale difficulté est la compatibilité des fonctions appelées du Java vers le Pascal. Pour ce faire, une
librairie spécifique (TEPThermoSoftJava.dll) permet d’assurer le passage des variables entre les deux entités.

La définition et l’exécution des calculs au sein de TEP ThermoSoft nécessitent :

• La routine principale (TEPThermoSoftCalc.dll)
• un fichier système (fichier .mel) qui rassemble l’ensemble des propriétés de calcul.
• les modèles thermodynamiques écrits sous forme de librairies (.dll) et contenus dans un répertoire

spécifique.

Remarque : Les deux fichiers TEPThermoSoftCalc.dll et TEPThermoSoftJava.dll doivent se situer dans le même
répertoire.

Exécuter un calcul en java

Définition des méthodes de dialogue avec TEP ThermoSoft

Les méthodes suivantes doivent être définies en Java comme faisant référence à la librairie externe
« Delphi2Java.dll ». Leur fonction et leur syntaxe sont expliquées dans les paragraphes 2.2 à 2.5 et un exemple
est donné en 2.6.

 public native int InitSession(String RepMODELES);
 public native void FermerSession();
 public native int ChargerSysteme (String FichierMEL);
 public native double Lire(String Symbole);
 public native void Ecrire(String Symbole, double valeur);

Thermoptim

TEP ThermoSoft
- Calcul -

(TEPThermoSoftCalc.dll)

Interface de liaison entre les
deux programme

(TEPThermoSoftJava.dll)

Ensemble des modèles de
calcul.

(fichiers .dll)

Fichier système
(fichier .mel)

71

Thermoptim reference manual volume 3 November 2014

 public native void Calculer(String code);

Chargement/Libération des modèles thermodynamiques en mémoire

Avant tout calcul, la méthode « InitSession » doit être appelée afin d’initialiser l’ensemble des paramètres et de
spécifier le répertoire contenant les modèles thermodynamiques « .dll ».

InitSession(System.getProperty("user.dir")+File.separator+"TEPThermoSoft_DLL"+File.separator);

Cette fonction retourne un entier qui détermine un code d’état :

0 Pas d’erreur
-1 Erreur inconnue

Une fois que les fonctions de calcul ne sont plus nécessaires, il est souhaitable de libérer la mémoire en appelant
« FermerSession »

FermerSession() ;

Définition d’un système

Un « système » représente soit un substance pur, soit un mélange de plusieurs composés. Toutes les informations
relatives au calcul de ses propriétés (Modèles thermodynamiques, valeurs des paramètres de calcul, …), sont
regroupées dans un fichier unique dont l’extension est « .mel ». Ce fichier peut être ouvert avec un simple
éditeur de texte. Sa structure reprend celle d’un fichier « .ini » sous Windows. Cela signifie que des catégories
sont définies entre crochets :

[GENERAL]
NOM = Melange
DATE = 25/04/2005
HEURE = 08:17:56

[CPS]
994 AMMONIA
1000 WATER

[ELV]
S CAlpha AlphaMC.dll
S CCPGP CPGP107.dll
// … //
P a(1)
P a(2)
P ALPHA(1)
// .. //
P CP107(2)[0] 33363
P CP107(2)[1] 26790
P P Pa
P Pc(1) 11280005.625 Pa
P Pc(2) 22055007.45 Pa
P PHI|l(1)
// .. //

Propriétés générales sur le système

Informations sur les composés

Modèles thermodynamiques à utiliser

Symboles et Valeurs des paramètres de
calcul

Une utilisation répétée de ces deux méthodes peut ralentir les calculs. Il est ainsi préférable de regrouper les
calculs quand cela est possible.

72

Thermoptim reference manual volume 3 November 2014

Au sein de TEP ThermoSoft, tout calcul se réfère à un système donné. Pour cela, il faut, à partir de l’application
Java, charger les paramètres de calcul en mémoire à l’aide de la fonction « ChargerSysteme » en spécifiant le
fichier système voulu :

ChargerCalcul(System.getProperty("user.dir")+File.separator+"mixtures"+File.separator+"TEPThermoSoft_
MEL"+File.separator+selectedFile);

Cette méthode retourne un entier qui spécifie le numéro du mélange chargé en mémoire.

De plus, ce numéro, s’il est négatif, indique une erreur lors du chargement du fichier. Pour le moment les codes
d’erreur sont les suivants :

 -1 Erreur inconnue
 -2 Fichier introuvable
 -3 Aucun composé défini dans le fichier.

Modifier / Lire des variables de TEP ThermoSoft

Une fois un fichier de mélange chargé en mémoire, deux méthodes ont été écrites pour permettre de modifier et
de lire les valeurs des variables se référant au système. Toute variable intervenant dans les calculs peut être
modifiée ou lue. Pour cela il suffit de respecter la typographie suivante :

 SYMB(cps)[vecteur]|phase

SYMB symbole de la variable à modifier (Ex. T : Température – Cf. 0)
cps composé ou interaction entre composés (Ex. (1) , (2), (1_2)). La numérotation des composés

commence à 1.
vecteur numéro du vecteur (ex. [0], [1], …). La numérotation des vecteurs commence à 0.
phase lors de données multiphasiques, la barre | suivi d’une lettre (l ou v) permet de définir la phase

recherchée (ex. |l ou |v).

Par exemple, la lecture de la température peut se faire par la méthode :

double temperature = Lire("T");

De même la modification du premier paramètre de la fonction Alpha de Mathias-Copeman pour le composé 2
s’écrit :

Ecrire("MC(2)[0]", 0.152);

Lancer un calcul

Pour lancer un calcul, il suffit d’écrire la valeur des paramètres de calcul au moyen de la méthode « Ecrire » vue
précédemment, puis de lancer le calcul par la méthode « Calculer » :

Calculer("Tx");

La méthode « Calculer » attend un paramètre qui définit le type de calcul souhaité (cf. 0) Dans l’exemple ci-
dessus, il s’agit d’un calcul d’équilibre LV en mélange en spécifiant la température et la composition liquide.
Ainsi, avant d’exécuter cette fonction il est nécessaire de bien définir les variables T et x comme par
exemple pour un binaire :

Ecrire("T",280);
Ecrire("x(1)",0.1);

Ce numéro sera utile lors de l’utilisation de plusieurs mélanges en parallèle. Dans un premier temps un seul
mélange sera pris en considération.

73

Thermoptim reference manual volume 3 November 2014

Ecrire("x(2)",0.9);

Exemple d’écriture d’un calcul complet

Voici un exemple de lignes de commande permettant un calcul à l’équilibre LV du système « NH3-H2O» défini
dans le fichier système « NH3-H2O.mel » :

InitSession(System.getProperty("user.dir")+File.separator+"TEPThermoSoft_DLL"+File.separator);
//
ChargerSysteme(System.getProperty("user.dir")+File.separator+"mixtures"+File.separator+"TEPThermoSoft_M
EL"+File.separator+"NH3-H2O.mel");
//
Ecrire("T",280);
Ecrire("x(1)",0.1);
Ecrire("x(2)",0.9);
//
Calculer("Tx");
//
P = Lire("P");
y[0] = Lire("y(1)");
y[1] = Lire("y(2)");
//
FermerSession() ;

Variables et méthodes de calcul disponibles

Variables classiques

Voici une liste des symboles les plus utilisés dans les méthodes « Lire » et « Ecrire ».

Symbole Unité Description
T K Température
P Pa Pression
x(i) Composition liquide du composé « i »
y(i) Composition gaz du composé « i »
z(i) Composition globale du composé « i »
h, h|l, h|v J/mol Enthalpie
s, s|l, s|v J/mol/

K

TauVap Taux de vaporisation (= -1 lors d’un calcul ELV Px, Tx, Ty ou Py).
h0 J/mol Enthalpie de référence.
s0 J/mol Entropie de référence
Mw(i) kg/mo

l
Masse molaire du composé « i »

74

Thermoptim reference manual volume 3 November 2014

Méthodes de calcul

Voici une liste des symboles des méthodes disponibles (elle sera complétée au fur et à mesure des besoins).

Symbole Type de calcul5 Description
Tx MEL Calcul à l’équilibre LV en spécifiant la température et la composition

liquide.
Ty MEL Calcul à l’équilibre LV en spécifiant la température et la composition

gaz.
Px MEL Calcul à l’équilibre LV en spécifiant la pression et la composition

liquide.
Py MEL Calcul à l’équilibre LV en spécifiant la pression et la composition gaz.
PTz MEL Calcul en spécifiant la composition globale, la pression et la température

(données à l’équilibre ou hors équilibre LV).

Pour le moment la méthode PTz semble pouvoir suffire car valable en substance purs et en mélange (suivant les
valeurs de z). De plus elle est continue à et hors ELV. Ainsi une méthode numérique simple devrait permettre
d’estimer les valeurs à h et s constant.

5 MEL concerne les mélanges et CP, les corps purs.

75

Thermoptim reference manual volume 3 November 2014

A N N E X 5 : U M L D I A G R A M S O F E X T E R N A L C L A S S E S

Substance class diagram

76

Thermoptim reference manual volume 3 November 2014

External component class diagram

